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IHIRODUCILQN

The purpose of this thesis has been to extend the

methods of calculation of wave functions in solids.and to

investigate the applications of these wave functions. The

point of view has been that of the modified Hartree�Fock

scheme of calculating wave functions_developed by �ignor

and casts,� together with the s1ater* method of calculating
excited states.

~ ta particular, detailed computations have been made
for the highest filled hand in crystalline sodinm.ch1oride

(rock salt), Ihich originates from the completed at shell of
the Cl" ion. In the.process of this work new methods were re-

quired in order to treat the type of boundary conditios arising
for the case of two different kinds of atoms, fhree different
approximations, which may be characterized by the&#39;Joining co-

ditions,have heen�inrestigated. The most exact of these ins

solves satisfying the Slater houdary conditions (oontinuity�
of  , and the component of V �I? along the interatomio

.line) at the midpoint of both the 110 type inter�chlorine line
and the 100 type chlorine-sodinn line. The approximation ob-

tained by using the cle�a points a1one_di£fers markedly from.
this in its_energy contours and is usatistactory for various

�i?&#39;§i;;;&#39;;;a&#39;§2"§;i;;;&#39;§£;;i��;;t�;.§:&#39;§65"Ei§513? """"" "
J. C. Slater, Phys. Rev. gg, 794 (l954),_ &#39;



other reasons, another approximation is-obtained by neglect-

ing the Ha-C1 points and using the_Cl-Cl points alone. Ale-

though this formulation would obviously be inadequate for the

_bands arising from He levels, its results are quite close to

those of the most complete method where that method has been
worked out.� It also has the advantage of leading to the face-
centered lattice conditions which have already been investigated

by Krutter.* I I

In the course of investigating the face-centered lat-

tice, several new methods of increasing the informatien con»
.cerning the energy contours have been developed. -It-has been

found possible to make calculations for small values-of the

wave vector, k, for cases in which it is impractical to carry

out the details of the Slater method for larger values of k.

Sereral new reductions of the general Slater determinant have

been found which allow the energy contours.to be drawn threughr

out space with a good deal more confidence than before.

_ It is possible to test the adequacy of the Slater

method by applying it to the one case for which the correct
solution is actually known: -that of the case of zero potens

tial which gives rise to plane waves. This test has been
carried out for the important directions in body and face-
centered lattices. For momenta within the first Brillouin

zone the agreement is excellent. For the outer zones it is
quite unsatisfactory and indicates definitely that some other
=a:&#39;i:"ea:23;:&#39;5a;;:&#39;a;;:&#39;h:�aéa"zi§éai? """""""""" "
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II.

can �soon muisxons Ann was sea-_.ra§m APPBGXIMATIQII

If weare willing to neglect the motion of the nuclei,
as in the method of the "clamped" molecule, the Hamiltonian

for the electrons is

(2.1) a .= Z §;(§�_-)3??? + VCXJ) +  .
~ .1 ~ ,1<k 1-1

Here 3 is the index of the electrons andr1Jns from 1 to
n , the total number of electrons. 1:3 is the coordinate of
electron J , and VJ is the gradient in these coordinates.
V(xJ) is the potential energy of an electron at 13 in the
field of the nuclei. Although this potential is infinite for"

 infinite crystal, the potential on any electron is rendered

finite "by the presence of the interaction term e2/1-11 .
The Fool: method. consists of setting up a determinan-

tal wave function of the form

�l&#39;]_(x1: $1) " &#39; &#39; &#39;4"1(1n: $11)

(2.2)X=A_.......

The § ; are spin coordinates and the one electron wave functions

1;: (x. , f ) &#39;= y: (3) SW; are assumed to satisfy the
&#39; t J

equations

(2.3) ii sigcx , g > was, gt)axs= Sm

"-�""&#39;-""&#39; �F T-"T 3&#39; "! " &#39; � -&#39;I-F1� �jun-we-en" --------- - -------�--��.-.j.-..-. .- u-.- -. . . .-- ..-.
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This orthoneral cenditio intro�uces no lack of
generality. If we attempt to minimize the mean value er a

"J .. X�: I

we fine that the functions $ must satisfy the welleknoun
Foch equations.f I l I

&#39; If atoic units are used, these equations may be
written in the form

  (2.5) [-V? + we 3 + am] next) +2]; [�ek1<x> - ah wkce;)t= on
Here B(x) =Zk % 5ln]rk(1:&#39;3�)2|;éj-I data�
is the electrostatic potential of the electron distrihutien

represented by;Z:.. V&#39;+ B is then the electrostatic potential

of a neutral lattice of plus point charges imhedded in the

negative charge distribution of electros.

The_ ski are the exchange terms:

(2.6) n,,,_<z> -=  s$;<x*~ g->~r_,._<x- 5=);;I% as .
In order to understand the effect of the exchange

terms, we shall assume that the wk are functions of the

*EEE"E3EEEi$&#39;;£E"£&#39;£-EE7eEEE?&#39;SE&#39;EEEl§3Ei*EEiE§Ei&#39;EE§&#39;§i§EE�EEES&#39; 
is taken in.an.ahhreviated for from Frankel �Wave hechanics
Advanced General Theory", pages 428 to 431.

�e-~&#39;-»�.&#39;�--u-&#39;n;....e-_-g-_.,......._..-.. -. - .  . __ __ _ __ _ ___
-.- �- en. j.��j���-��---��-.....�_...,_._.._.- ,-_ 1&#39;, .. . , .. , _ ._ _ _ __________



} Bloch type. Let us suppose that we have a parallelepiped of

material whose edges are parallel to a set of three fundamen-
tal lattice translations a1, a2, a3 . Let there be 11,
atoms along the first edge, etc-., so that the total number

of atoms R = 11.11., 11,.

"&#39;3 when the atoms are so far apart that atomic wave

functions can he used, the Bloch functions satisfy the Fool:

%-equations. Let the normalized wave function around atom OK ,
whose position is E� =Z mi: as , be V� (x). We shall

3 �.

assume that qt! s for different atoms do not overlap. The

Bloch functions will be

§_.[§;T I. ___ 1 &#39; . R - (2.?) Wk �g E Basia at W
&#39; _ If we express /5&#39;}: in terms or the reciprocal vectors .135

of� the as , /6 k =;-gkébs ,I- then theconditions of periodi-
icity for the entire parallelepiped require that

.  . _&#39;-�ks - % (2�&#39;3) jks " 35- where Inks = 0, 1, 2 �H, I13-1 .

Thus there 1:111 he 11-ln�i-13 choices of �the triplets (.¬5,,!� ,i,;;),
II�1$I-IZ-u-I-n-.-2I�I:2�I--I2-IrII��ru�ll-«�-v:I-u�I-:-:�--n-nu-A-::u�Iv�I I-1111311IE"-I--I�h-I�ZI�rID-&#39;Z&#39;£|1lb:-It-lint-¢�I&#39;2-C:lIII�I-It-IJIZ-inlél--IC-;Thetreciproc§.l vectors are Eefined by Ibs-at = 531;� ; these

eqoa ions are... satisfied by hi 3 (a2xa3U.[a1.a2m3] etc_



or Just as many Bloch �motione as there are atomic functions.

To eetablish the orthonormal properties of the &#39;1&#39;!�/�Q ,&#39; coneiéer

~ 
C3 
"IL 

PE� 
&#39;1

Renee the 1}/�k are related to the �K by a unitary trans-
formation and the reciprocal transformation can be In-ittem

down at once.

*&#39;  1 &#39;I".&#39;F

(2.10) �K =% Z; 9&#39;3�/i&#39;E&#39;;,&#39;rk
Next consider

(2.11) s = Z; a,,1<x>3Vk<x> =4� 5-&#39;31-/_,;:(x&#39;);.Tg§7y3?,$7(*&#39;);gQ;¢�W¢&#39;(X)

The t,]:u-ea �V/&#39;k&#39;e involve three summations over the  "s.
It is clear that  only non-vaniahing terms occur when the_
terms in ��\[/§(::&#39;) and 3&#39;/&#39;i(xI) come from the same atom.
Hence 8 reduces to

- I-vrf _;(&#39;Rar"R-r�) .+&#39;Rn!&#39;] , .&#39;(2.12)_r��;�3- g; 3 If _ 73 J|1}§.(x)r_�_§.. alrx &#39;1]/;[(X)
=,-,-�,&#39;,-,- 2:: 8..,...e*"��./�""" S »»4.(xou��¬-,)»rx�¥£<x)&#39;r(xx



If we put this expression in Equation (3---57 on-9&#39;
suppose that x .1s�near&#39; E� , we get

1 2x1 _. *-B. 2 _ 12 .l=�&#39;-�O gm e /� [-v +hv(z) + etc) -4- Sl1,|§cr&#39;Jl�-:,J"?� --lo 1%,
� E  it eg�i� 9B�  =  .

F .

_ The in R will be zero, as can be seen by multiplying by
52�/95 �RI� and summing over 0! . The first term is Just a

&#39; the Foek equation for one tyne of atom and 1 11 is the energy
 of the _ solution.

as a matter of fact, this result could have

3&#39;5
seen without calculation. The single atom &#39;5!/�Otis are related
to the Bloch �V/&#39;k|s by a unitary transformation, aao it is
xrell-known that a unitary transformation leaves the Fool: equa-
tions satisfieds However , the method of derivation used above
is suggestive of what may be true where the isolated atom pic-
ture breaks down. In that ease, single atom wave functions
oannot he used for outer shell electrons and  k must be
represented by

d (22-14) M = H�1}§ Z amt�. &#39;3-&#39;11/M, (as)

�share the 14, d for different atoms may overlap and in general

will be dependent on k . If the dependence on .1: is not too

extreme, we should expect that in the summation over 1: in

Equation (242 ) the term for at =c-U would be quite �large,

�_-. ...._. _ __ __ _ ______ _ �_" -- - � �&#39; -  v-uv�wr-.&#39;m3t&#39;:.&#39;-1 &#39;=-"&#39;1-I=-&#39;~nrI-&#39;I-&#39;o--an-----+- -�--�--u-u-..-u-.-.-�..-....-..._-.....___._...._..._..._ ,,..._. ,_. ,, . _ _- _ . -



compared with those for at 5! cut� and that the value of the
terms would decrease rapidly as I l Rd -  d,� increases
from zero. Fro (313) we saw that as the electron noved about
the lattice in state&#39;VVi, it always found itself upon an
atom lacking one electron in.the same state as itself. we

�could then think of the electron as carrying a hole about

with 11:, and pushing other electrons out of this hole -as it

moved around, as would expect to find this property preserved,

nrobahly to a lesser extent, in the exact solntio.

3 ea Electrg ssve mam s
This view is confirmed in another case in which a

solution of the Foch equations is known. That is the case

of free electrons where the &#39;�,V k = eg�i�f x . F01� 131113
we find that the exchange expression can.he integrated out

and again represents a hole which the electron carries about

with it. We find on the average that this hole represents

an absence of one electron in the lattice cell surrounding

the e1ectron.under consideration: Hence, at both extremes,
that of separated atoms and that of plane waves, there is an

effective hole of roughly the volume of one cell which follows

each electron through the lattice. This further confirms the"

argument above that there should be an effective hole in.inter-

mediate cases.

Another feature is discovered in the plane wave pio-
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ture. The values or the exchange tern fer a given electron
is found to depend upon the mementum of the e1ectre.* By
a straightforward ealculatien, it can.he shown that this

&#39; term is largest for an electron with zero momentum.and heeemes
negligible for highly excited electrens. This behavior hen

�cones reasoahle in consideration of the Themes-Fermi picture.

An.electron with small mementum finds that all adjacent values

W in.momentum space are occupied; therefore, in.order to possess
§_ its allotted volume ha of phase space, it must have a large I

volume or configuration space. This produces the hole about

the electron. on the other hand, an.e1ectron with almest the

�maximum momentum -- that is, one near the surface of the oc-
cupied sphere in momentum space -� is conscious of the wide

open spaces near it and therefore is not so greedy of config-
uration space or so repulsire to ether electrons as the elec-
tron from.the center of the&#39;dense1y populated regien. It
has therefore a men smaller hole. It is interesting to see
if this type of effect is present in case of B1och�1ike func-

tiens.

Let us see what the effect of exciting ens electron

would be in the Bloch approximation. Excitation of one electron

1.1.jig;-ujj�u-...n&#39;ig-�h�gpiqjnji-11&1-an�I-I-I-I|IIIl_--1-ItIIIII-I31-Fl-I�l&#39;�l"��"&#39;$�-l"&#39;�"��"-1-*"i"1""&#39;��_"i"&#39;�"" "1�-"&#39;5&#39;-"1""&#39;11"1j

"� ""= -�--I-E4-" -&#39;=&#39;-�-- �.&#39;-"1&#39;--Hr-I-I--=-:



in the determinental wave function 96 , by a Bloch function
for an excited state,

(2.13) 7 = % é &#39;J�}°;-as 7�
How this change �will effect a negligible alteration in the

_Fock equations for 11V]; . This follows from the fact that
- the density of charge introduced by any one wave function into

&#39; -: :&#39; {:-

&#39;  I:
£55?�

.:I&#39; .

�Ii�. 
::;.
J

B or A is proportional to 1/ N . However, the A term

for Yf itself may be greatly altered. This term,_ using the
same type of calculation as used in (2.12), reduces to

(2.1?) s�: �-§a(Z§:.,«�3#i,r=9.&#39;-Ra: 5?;/-3,1) >1� (x:)%dx:1§(,) ,
In this case the exchange integral may be very small. On the
atomic picture $TyZ(x&#39;)%(x&#39;)dx&#39; = E) . The presence of the
l/r term will spoil the orthogonality of the functions. How-

ever, we should expect the effective hole due to the �-1177 ex-
change to be much smaller than that for the Hkglezch-ange.;_

So far in the discussion, except for I1 , only �one
type of atomic function has been used." actually there is a

: � -"-&#39;- - ---- &#39; -"&#39; H _ " &#39;  """"&#39; &#39; "� "&#39;  - �..&#39;.L"-_l:u|r.£;.."_s....._.." -&#39; "&#39;...._&#39;-"" &#39;!"&#39;.&#39;2":""=f"H"\_|&#39;.".._&#39;.�: *"W\-r---&#39;-M----�--v-----~------� - -----m� .�.----�--�_-..-....-.....c..._.._.._......._ ., _. ,
-� -�--- I -- ��-1- ��� �---- --� - -u.._�_... .
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double set of Bloch functions from each atomic level, one

with each spin. These other terms have already been included

in the description of B , and we met now see how they will

enter in A . In the Foot equation for }V&#39;k , the A terms
will be of the form

2.18  t r t 1: ,(e � §5��a"�9�1Ve�§�TL7&#39;*�z- ea 1&#39; e.<==¢>
It is seen at once that there.is no exchange between functions
of different spins. For functions of the same spin, we must

consider all the atomic levels. By the same argument that was
used with Q ,.we conclude that the most important term is the
]]F&#39;l2 one. If we neglect the ether terms entirely, it is
quite simple to specify the type of field in which the electron
moves. For a given electron moving in a filled band, the field

is that of the entire lattice and the electrons, B+V , minus
the potential due to one electronic charge distributed accord-

ing to the wave function of the given -electron. This potential
follows the electron about so as to he on the same atom as the

If the electron is in an unfilled hand, then the

potential is just B+V , the hole being negligible.

electron.

This neglect of the hole for excited states is not

as well Justified as the presence of the hole for filled states.

In fact, for the case where free atom functions are correct,�

it is distinctly incorrect. In that case, the-excited states

of the lattice obviously correspond to excitation of_single

atoms or waves of excitation, such as are.used by Frankel� and
*3:�§§;as;i:&#39;§a;;:&#39;§;:;:&#39;e:&#39;1-r;aa"&#39;n;"is-a-z1*ee:y""f "" "
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�entze1.* our method would not give these states, because the
correct excited atom wave function is a solutien of the wave
equation in a field with a complete hole (atomic picture),

whereas the lattice method does not give this field. The ques4

tion arises, why do the lattice and Bloch.methods agree perfect-
ly fer the lowest state but not for excited states? The reason

for this is that the lowest state determinantal wave function

is actually the same for hoth pictures. on the other hand, the
single determinantal function for an.excited state handled on

the lattice basis is not equal to any corresponding determinant

of the single atom functions with one excited atom;_in fact, a
cannot be expressed as a linear combination of these at all.

Hence, it appears that the Bloch type of function was definite-

ly bad for the calculation of excited states. There&#39;are other

reasons in connection with polarization forces in.the theory

of dispersion which argue against the lattice treatment.

On the other hand, the tighter the lattice is squeezed,

the worse the free atomic picture becomes (especially for as-
cited states, which generally have greater spatial extention
than.the normal state) and consequently the better the free

electron picture becomes and the more nearly correct are the

Fock lattice equations. In the intermediate region both.methods
are inadequate, and it is not unlikely that the Foch method it-

self is not good enough. This is in harmony with the findings

I *6. Wentzel, Holy. Physics acta g, 39 (1933).



of Higner* in connection with the somwhat similar problem of
the correlatien hole between electrons of antiparallel spin

in monovalent metals. actually it is not of great practical
interest that neither free atom.nor lattice Foch approximation

is adequate. Satisfactory mathematical methods have yet to

be evolved for obtaining good solutions for excited states on

either picture.
For practical purposes, the Fock approximation is

replaced by e Eartree scheme. The exchange term is actually

considered to he a part of the potential according to the above

procedure, and the total potential is then averaged over all
angles according to the Hartree method. The resultant equation

for �y� can then be resolved according to the spherical har-
monics, and the radial equation solved numerically. The values

of lkk will give the energies of the one electron functions.

-u�-�-.-us:-.q�1�I-1---n-�u_n.-�u.--I-�n�rn.--�:--3..-pg--�--�-In-u�I-a-�-a--Ii�&#39;-I:�-I-I-&#39;IIIIvI-I�=I--I--Z-v�I-IIIII-I:-Iri--I 1--:1--I�r---UIZZ-�I-Ii--Z�-I-&#39;�|-I�ll�



So far in our investigation we have supposed that

there was only one type of atom. This made it possible to

write down Bloch functions which were sums over a single set

of lattice points. In general, the situation will he more

VJ complicated. For Hacl, in particular, there are two types
_§§§ of atoms, each forming a face�centered lattice with every
? atom at a symetry center. For this case, we must consider

each Bloch type function as being formed of two parts: one

part giving the behavior around the C1, the other around

$L the Re. For the levels arisingfrom inner atomic shells, the
:§§ wave functions will not be very different from.the free atom

wave functions, and for them Bloch functions using only one

lattice type will be satisfactory. For the upper levels, &#39;

however, the wave functions will extend over both C1 and

Na atoms, being considerably larger about the atoms from

which they originated as atomic levels than about the other.
atoms, but being appreciable, nevertheless, about both types.

In order to investigate the type of hole which is

associated with one of these electrons, let us build up a

Bloch type wave functio. Let the atomic type have faction

about the. chlorine atom at R,� be �+�._..; , and about the Na

atom at R), be or . Then the Bloch type functions
would be

(21.19) �pk =  gv egiti� «Ham: .4? e�ryi oBy¢&#39;]



(A proof that the correct one electron wave functions are_

actually of this type is given in Theorem ll of a later

section.) 
We will neglect the overlapping of &#39;§� 0� and or

and suppose. that 5&#39; 11¢� fI- cplla dx = 1 . The components of
the exchange terms will be of four types:

(2) 5 717; (ac-em (x~);(,�§.�;�axv mp, (x)

(3) 5 3&#39;; (am, (x-)-;(,;§�.;ax= we (ac)

(4) 5 $; cx-)9, <xr>;5,%;ax+ 4», (x)

(1) sir; txrm cxv);(f;;ax= -4r,,x=:>l

(Terms of the form

5 $;(x~)¢,,(xr)%ax- up,» (x)
will not occur, since #�(x&#39;)o3,(x*) is always zero.)

_ The effect of (1) and (4) will be the some as that
found for the one atom type case. They will lead to a hole

of the type �#312 or |¢r\2 when the electron is on a-
¢�type or a o�type atom respectively. (2) and (E) are sim-
ilar, so-that only one of then need be investigated.

Consider the_terme of type (2) occurring in



= 3% Z  62;-ti-(&#39;4   (x1_)\ 2  _dx�? (x)

In evaluating this term in the Foe}: equation for iii , we

shall assume that the electron is located on atom Y , and

aealoul-ate the eontrihutien of the integral when the sleotron

x� is an atom oi  If Ire call this term

4R &#39;tIdX1(x) 3% ez�i� 79 ((1!) , so as to have it resemble
" a potential energy term, we find

1: - I I I �(R �R ..&#39;R"&#39;-J(2-21) 92 ifs� R{Uaw1(x)&#39;=�1%�Z eg�l�� 7� d]7a5l%I(X&#39;)\2
1:.

and

_ _;_ 2 1,-as-£1; U_q,1(x)J§e�/3. ?or(x) .
We are interested in seeing how Udxi behaves and whether
or not it can be interpreted as a hole in the charge distri-

bution about the neighboring atoms H when the electron

is on atom }{ .

In order to investigate this, we need the wralne of

-the coefficient of

Hm <==&#39;>\2
in EdY1(x). "A value of unity for the ooeffioient would
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correspond te a hele en etam �� with charge distriwutien
2 _

�$1 �-

&#39;e2:¢i�g£-(��-R?) Z 3211i/1-(R,�_-�Ru)
k .

This is

(2.22) 1%

"Fer the sodium chloride lattice, the unit veeters

ETE �

a1 :4 -%(e11)- , a2 = §(1o1) , ea = -3-(110).

The reeiprecal vectors will be�

bl = -gall) , ea = %(].&#39;}�.1) , ea = gum .
&#39;1.

The displacement between nearest nets and C115 will be

P = (1/2)e(10o) =§(e1_ + e2 - es) .
Then ng_ = Ht. will be a whale number ef lattice vectors
plus Io &#39; and cell be written as

12., - Rd = (m1 + -ee + one + ee + (me + ewe

New #gk�x eé �-If es where I� = 0, 1, 2, "-115

Therefore; _é7 
1

_/31:43:-&#39;.R-I)  -%:<=e+-ea -
Henee, the sum ever k becomes
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Z e2u1£�,(m_ +1/2) Z esu1,9�_(m,_+1/2) Z:E2�_¬(mJ +13%)
/1 -es _ is

2ni(m�+1f2) 2#i(m,+1/2)
- ; - 1

$251  _ 1 324:1 IEKEYIQ _ 1
n2 _ _ _ n3

Each faetor here is of the form

21 «mm; � -
e _ - 1

�*1

Since the size of the crystal is arbitrary, we may choose

nl as large as we wish and expand these terms in inverse

peners of n1 . This gives

_3 f I - Enl 2si(m1+l/2)
an range is = &#39; (1 - n * )-e .nl*- - 1 I 2s1(m1+1/2) 1

Recalling that nlngna = H , we find that (2.22) becomes

_ Bui/i-(Bi-Ht)
(2.23) - 13° +-terns in.%� etc.

1-; u (m1+1/2) (m2+1/2) (m3+1/2) 1

This factor will in general be eomplex._ In particular, fer
/3 1 = 0, it is pure imaginary; This means that the potential
of the hole induced on atom °� due to the presence of the

electron an atom �K� is pure imaginary. Such a potential

has no straightforward interpretation in quantum mechanics.

In making calculations, it is necessary to approximate the



&#39; field by one of �spherical symmetry. This suggests that

we should consider the of atoms inpairs? at and .-,-.1� ,
such that ad - 12,, = - (Rd! - Ba. ). If� we add the poten-
tials of these pairs, we find the net potential is real.

This follows from the reversal of sign of the terms nil + 1/2 ,
etc�. which make the coei&#39;f_ioients for of and or� 1&#39; complex
conjugates. For /91 = O , these terms just cancel in the
spherical approximation, and the exchangepotential vanishes.
For values of �i and R�; such that

Bess/s -(H..-- -3.) ___ 3 1
I

the potential of atom pairs of and of� on the electron
at stem 3� will be

3 2 5\1F(x*)\2 -2 ax�! .&#39;it-3(ml+l,./2)l(1n2+l/2)(1113-I-1/2) *&#39; rim�)
an exchange potential of such peculiar characteristics

as those given above is definitely without physical signifié
canoe. What the calculations indicate is that the Fool: method

is not appropriate for wave functions of the type (2.19).

In fact, we are inclined to think -that physical in-
tuition about these potentials is more reliable than the in-�

formation obtained ahove. For example, in the 01-3 P hand,

the Cl wave. functions qt are much larger than the Na func-

tions on . when anolectron of this hand is around a Cl,

-r- H ...��.� -- - ----u-.-.- - ......:.�__..____3_,-_..&#39; .+. . .. . .. _.. ."_.._..".&#39;1n_,__. . .. ._n..&#39;_,__" , I,
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3.139111. 
ch it makes in the ¢ di
Ea, the hale whi 

It is not reasonable to

the value estimate� for this fraction.

antiparallel spin, however, wher
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If wk is rep1eeee_by e and the difference between the
new �E1 and the eld E" is found, we get

at .. e e 5$[-v3 + «:1, dx � gm-ea + em :13:
Z - 2 2 __ �� 3 2 &#39;,+ milk: or e 5 wigx) (|"�¬c)|  )?G5?&#39;-7 �max

i- setx->mZm_ tps�icxn ecxs)m%;-.-ydxf¢1<x)ax
+ wk<x>#z: serge-> q:ktx=);7;§eyax= eiceaxk er e

3&#39;5 [(473 + V + s)cp �Z%_A_i$\}1i-M dx
� -Wlclbvg " V + B�); �Z *�*11«..-.���1} &#39;13

1

From equatiens (2.5) an� (2.13) we conclude

.�-5.1-:

Hence, the energy difference between states in the Fuck

lattice scheme is Just the difference in energy values of

the states involved in the excitation. If several electrene

are excited, the energies will be additive. This will hold

so long as the cross terms between excited functions are

negligible, which they kill be if the number of exeited

states is verY_smell compared to the unexeited states, a

condition which will be generally fulfilled.

.- �----:-e.u.|.1-I-.1-..-w .-4�---u-Ci-uw�lbf. - Id -__,-_-,._... _-..--.__-;.-_-_
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after the potential field in which an e1ectren.meres
has been determined,-the problem is to find a solution of the

Fcck equation, or, rather, the Hartree approximation of it.
�Re are interested in solutions of the type

Wk &#39; § �Ea/_G-!:&#39;B",Vkoc
rhere k is defined for the cell centered around E
and is zere outside. The whole function. k is finite and
continuous with a continuous gradient thrcughcut the entire
lattice. The problem is to solve the were equation inside of
any cell subject tc boudary_conditions an the surface of the
cell which insure the fulfilment of the continuity requirements.

The Ha-G1 lattice is face-centered and has exactly
symetry as it would have if the He atcms were removed.

3 to a chlorine atom
the&#39;same

The fundamental cell is formed by assignin
all the space which is nearer it than any other chlorine. Such

will centain cue chlorine atom at its center and one-
a cell 

one Eacl melecule
sixth of each of the nearest six sodium.atcms:
in all. Fig. :3 shows this cell. The space in the center of -
the cell is assigned to the G1; the pyramids at the corners

- o

to the Rs. Since the Cl" ionic radius, 1.ea
a larger space is allcwed to it. This

5 is much larger

than the Raf, 1.93?

1- �-u-1-.�._.._�u-....� .n.... . ...-�
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is schematic and the position of the Ha-G1 dividing planes
are not to scale. _

another call could he formed by interchanging sodiuns

and chlor1nes§ the difference between these cells is unessen- &#39;
tial: in the and both kinds lead to exactly the same condi-

tions. For ease of visualisation, the chlorine centered cell

is better and will he used.

The method of solution, as stated on �page /4, con-
sists of approximating the IEVB equation near any atom by a

spherically symmetric IBVB equation. la the case of a face
.or body-centered metal, the wave equation is very nearly

spherically symmetrical. This is due to the fact that the

atoms are neutral so that the electron is conscious of the

field of the nearest one only and this is spherically symmetric.

In the.case of Hacl this is true, but to.a lesser extent.

In order to get an idea of how much error there is

in spherical symmetry, let us neglect the exchange hole for
the moment and use an.ideal1zed nodal in which each ion is
represented by a point charge at a lattice point. Next we
surround each atom by a cubic box containing all points near-
er it than any other atom. The planes which contain the faces

of the cube are not reflection

planes of the lattice; in order

to be-such, they would have to

be placed so as to be perpendicular
bisecters to lines connecting like

* . ru.- uu . - ....� u . _.&#39;.1...�_..�-- - -- .-_�.-.-e��-:-��.-.-.--.-1.. 1 I -1 - -- -------



.._._....... ..__....-_....:_..__,._:

_p..

+ 
o

-|-

s= 5.633 = 10.60». .u.



atoms. Instead, they are perpendicular bisectors to the lines

connecting atoms of opposite sign. This shoes that any point

in one of these planes is equidistant fro.pairs of positire

and negative charges, and hence that it is at zero electro-

static potential. Therefore, the field inside one of these

cubes is identical with that which would be produced by a

point charge at the center of a grounded conducting cube. The

zero potential of this field, of course, is far from spherical;

however; the inner potential surfaces rapidly round out to be-

come spheres. That this process will indeed occur can be seen

by considering the edges and corners or the cube. at these

places the field is zero, and the eqnipotentials are widely

separated, so that the_surfaces_li11 move rapidly toward the

center as the potential changes, thus becoming more nearly

spherical. 
another indication of the validity of the spherical

approximation may_be obtained from.consideration of the expan-

sion of the potential in spherical harmonics. The cubic syms

metry causes only certain of the harmonies to be allowed, the

first three oi� those having .9" values of 0; 4: 3- T113 high-
er harmonics will fall off as r4 or r3 as r�-!- 0, and will
allow the l/r term to dominate for distances only slightly

within the cube. The surface harmonics for .9 = 4,6, etc. are
unimportant for another reason. If the 0th and lat order
perturbation energy of these with _s &#39;and&#39; p states �� those
of the Cl� ion -� is computed, it is seen that s,p states
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have no zeroeth order perturbation energy withthese terms
in the potential. The s state has first order.perturhe-
tion energy with g and higher harmonics only, the p with
f and higher.

I There is yet one more Justification for the method.
So far, only the Hedelung lattice potential has been considered.
As is well-knotn, the ions are not point charges, but negative
clouds of charge surrounding positive nuclei. -is soon as the
electron has penetrated through a small amount of the cloud,
the nucleus exerts the predominant force, and the field becomes
spherically symmetric. I

� The potential about any ion will then be considered
to he of two parts; the potential of the id itself and that
of the surroundings. The former till be computed fro existent
atomic fields.� The latter can be calculated hy various methods.�
However, since we are interested only in the seroeth order spher-
ical hernonic of this field, we need make use of Hadelungis
numher only.
in

Hadelung&#39;s number is a pure number which occurs

1-11&#39;1-1%-or-£111;-�-£1;uJtp::-31111111tn. Hadalung, Phys. zs. is, �?.=a&#39;é~&#39;Z;"&#39;(&#39;iTaT1&#39;s")". """"""""""""" "
Pa P9  ZSI -fa  L6�,
H. H. Evjen, Phys. Rev. gs, 675 (1952).
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¢=
The energy per molecule,

_ _ 2 _ 2
?Per molecule =&#39;§f% &#39;;%�%#2§(§7;T = -0.872 zg�zy :

is 1/2 the electrostatic potential at the 01&#39; ion times the

charge on the ion plus a like quantity for the Ra+ ion. hue
to the symmetry of the ions, this is equal to the charge at

one ion times the electrostatic potential of all other ions

at that ion.

&#39; It is interesting to note that the number o.e&#39;r2
�can be estimated roughly from the zero potential cube picture.
The potential on the surface of the cube is 1/r due to the

charge at the center, and therefore -1/r due to the charges

outside. What we are interested in, then, is the potential

at the center of an empty cube whose surface is maintained at
a potential -1/r . This value must lie between the extreme

values on the surface (Gauss mean value theorem) which are -1/(5/4)
for the midpoint of the face and &#39;
� 1JJ§(8/4) = - 0.53/J5(S/4) "for a corner. However, the cor-

ner is certainly not as important as the center of the face.

The correct value would probably be about halfway between the

value at the middle of the face and the middle of the edge.
This gives [-1/(5 /4.) .. 1/J§( 5/4)] /2 = -9.35/( 8/4) for
the potential. _

Hence the potential at an ion should be taken to be

the potential of the ion plus e3(o.e7a)/( 5/4) if the ion

-* ._ v-&#39;=-"�-�------ ----2 -- --rm-~-�-.�..�-��.��.-...-..._.._._......_._._..._..__j __..._..._..._...,_ _ .   . .._ .. ._
In -9. »  lll__; -I:I  _. . . _ _ H _ It
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is Est mines if it is C1�. In etomie nnits the e2 is re-
placed by 8. After these potentials are known, and suitable

allowances are made for the exchange hole, the wave equation

can be solved for the radial functions associated with the

various spherical harmonies. The next problem is to forn.s

continuous solution in the elementary cell which satisfies

the proper boundary conditions. Before doing this, there are
three theorems to be proved about wave functions in e lettioe

with centers of symetry.
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FDR TEE FILLED QQEES

If we consider the crystal to be essentially ionic,

the sodium.wi11 be in the form of ions. The upper or valence

wave functions rill have practically zero charge density around

these, and therefore no hole. The field that should be used

around.the positive ions will be just that of the positive
:ion or the same field as was used in metallic sodium. have

_ functions for this field have been obtained by Slater.
The field around the chlorine is not the same as

the ionic fie1d,_however, due to the fact that the atoms are
squeezed together, changing the charge density. In order to

correct for this effect, the volume of space belonging to a-

Cl� ion was estimated. The volume of the cell belonging to

a Hacl molecule (see figure of page 24). is (530)3 x 2 =
500 At.U. This is, of course, the volume of the duodecahedron

of page . However, a certain amount of this volume should

be allowed for the sodium atom; exactly how much cannot be

decided until a selféconsistent solution of the entire problem

is obtained. A rough estimate was made from the_ he ionic

radius, which is 1.9 xuhs. If we h11ow %a¢(l.9)3 = as to
the sodium, the :21 �rolume is 271. This is the A volume of

-a sphere of radius 4.1 At.U. A reasonable approximation would
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be to renoralize the ionic wave functions so as to have unit

i, charge inside a sphere of radius 4.1.

For his solution of the 01&#39; ion, Hartree tahulates&#39;**�

the quantity Z(r) which is the number of electronic charges

outside the radius r ; From these we find that 9.2% of the
hp electrons and 0.9% of the 5s electrons are outside of

r = 4.1. Hence, the potential of the rencrmalized Sp is

1.191 times that of Hartreefs 3p and the renormalized as

potential is 1.009 times Hartreeis.

The potentials due to Eartree&#39;s 3p and as wave_

functions were ccmputeq_and also the potential of the
_ ls32s22p6 core configuration. These were computed separately

so that the potentials due to a 5s type hole and a Sp type

hole could be_fcund.

If E �is the charge inside radius r , then

�E;:# - -g-. This equation was integrated by Simpsonis rule-
r _

to get the 3s and 5p potentials. If the radial part of

the wave function is P/r and $P2dr = Z%*S(¥)2 dV =&#39;l ,
_then the radial charge density is P 2

gig) . If the potential
is writtgn as Zp(r)/r , then V2Zp(r)/1&#39; _= - 4::/0 gives
Zp = � ¥- . This equation for the core configuration
lsg�sg�p� was integrated by the Hartree methods* for small
r (r = 0.0 to 0.2) and the first order Z equation for larger r .

�D. H. 1&#39;-Iartr&#39;ee, .Caa1b.&#39;Phil. Soc. g, as (1928).
+-I-D. a. Hart:-es,� Pros.� soy. Soc. 141, see (less).

- -4-_--�.�-.1. .--\..._r;n.-:._. ._ .,_ _
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�f;�*+.potential due to the electrons. _V

was chosen so as to be zero at r = 5.3 which corresponds

to a point half way_between C1 atoms and should represent

roughly the limit er the c1 ion; For a functions, V
was computed for the configuration lsg�saspsss�p� , and for
p, d, and r from ls22s22p63s23p5 . That is, for 3s and
3p , the hole was made of the same type as the wave functien
�for which it was to he used. For d and f , a 5p hole
was censidered more reasenable than a Ba .

The �E defined above is not the Fock equation

parameter, since we have not taken into account the lattice

potential. This is 2 x %§%%%y-= 0.66. The extra factor of
2 is required by the use of atomic units in which the poten~
tial energy of 2 electrons is taken as 2fr . If we denote
the Peck parameter by �E? ( J? for lattice), as have
E� = E - o.ee .

The wave equatiens gere integrated with enough dif-

ferent values of E� _.. to allow interpolations of P and In

for arbitrary E" to be made throughout the energy range.

I For later use we shall represent the radial parts
of-the solutions for the two types of atoms and for various

J2 values by

«A. -&#39; ---.e--.~.-ea-.-:2 :>-n..-.J\r1ILm.-a;;.~.1-,..-:....-;».go¢asrp e&#39;.1-p_I¢&#39;3I.*«
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% 1 2 _ 3 4

Radial function around (:1 7 2: TI� A Ch I"
S� P D F GRadial ftmctian around Ha

A solution of Schrbdingerhs _ec�1at1an abant 9. �single atom in-
volving only 9113 radial function, such as (1 - y)/1-T[(r) ,
#111 be called a spherical function.

_ The value at �g-9&#39;-)-/1]r(r) "at r = 3.3 , the 01-01
half distance, will be denoted cr , «,5, <9 , 3&#39; for the
G1 ftm�tinns. The correspcmding quantities for the godium
functions at r = 2.65 , the Ra�Cl half diétance, will be
indicated by s, p, :1, r, g; tine values of ¢(2.e5)/¢(:-5.3)
for c1 funetic.-n_s, by 9-,}, mac, Sc, we, ya; the values of

" &#39;.&#39;.5&#39;n.�-&#39;1&#39;"-\.&#39;n.&#39;a&#39;u_&#39;_&#39; .&#39;-..--u &#39;_".&#39;.. 1., . ._...__. _ .. _. _.._.. ..  .. . .._ ......__..._ .  _.._......... ..__..._._.__.._._. j~,._-.,,.._....._... . ..-.



V.

5032 TEEOREHS IHVQLVIHG.CEHE§�§ OF §IHHETRI

In the Slater method of handling excited states,

it is assumd that the wave function in the cell at the

origin consists of two parts: a real part which is an even

�function about the center of the cell, and an imaginary part

which is end. This assumption leads to considerable simpli-

&#39; fication in fornulating_the boundary conditions and it is
worth_whi1e to prove that it will-generally be Justified.

Before proceeding with the proof, it is advantageous

to introduce some new terms which 3111 considerably shorten
the discussion. First of all, let us call the part of_the

wave function i�hgell about the atom at the origin the ggllngn
function and denote-it by $(r), r being the position vector
in respect to the origin. The correspondinn wave.£unction
throughout the entire lattice will be

*3 =� g elk! «Hg .¥(r _
where the R... are lattice sectors. In the special case
where the ¢&#39;s are formed of unperturbed atomic functions,

It�, is called a Bloch function; in general, we shall call
it_a ;a§t;§g function. when the cellular part t of the

�lattice function $},- is of the torn g + in we shall refer
to it as gQ;a;.; Kore genera1ly,_any function will be known as
moral about a centerrof symmetry if it is of the form -g + in
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around that center. _a function which can be made moral by

multiplication by a constant will he called a worthy function.

It is worth pointing out that worthy functions are really

a very restricted class; for example, (1 - i)x3 + (1 + 1)(y + z)
is&#39;a worthy function around the origin, whereas x2 + (1 + i)(y + z)
is not.

_ �We are interested in justifying the assumption that
all lattice functions have moral cellular parts. Such functions

and their multiples by a constant will be called worthy lat-

tice functions.

Tasoggg 1,

any lattice function can.be resolved into worthy

lattice functions.

t od me he

That is, if we have a non-worthy function which sat-
isfies our boundary conditions, it can be resolved into one

or two worthy functions which also satisfy the boundary con»

ditions. so long as this is true, there is no need of deal-
ing with other than worthy functions. any more complicated
lattice functic wil be merely a_1inear combination of these.-

. Exact

If 11:� is a lattice function, it is obvious that
the complex conjugate $1, will he an equally good lattice
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function. else, since the atom at the origin, like eirery
atom, is at a center of symmetry in the lattice, the func-

tion ebtaineui by changing x to -1 , 3 to -3&#39; , and 3

to -2 will also be a good lattice function. Let us denote

the resultant transformation on the function 1:� by n11r�*&#39;}.&#39;
The result of performing both operations on a function will

again give a good function.

Let 1:" = Z_&#39;_ e1""Rd $(r-B...)
. d -

$ = 2: a�"�«?r&#39;<.r-no
H

my = Z; eiH&#39;R°� H-r - Be) -
at

Since the set of lattice points -R.,., is the same as R; ,

Aw " «Z °&#39;m&#39;R°� ~1r(�r + H... J «
new 1r(-r + H�) is the same eellular function around atom
o( as \]r(-r) is around the origin. But \|r(_-r) = A¢(r)

 �Ey definition. Then A?" i 1:111 be

AW; = § 6�� &#39;3� Mr - H.) .
How� \|r�.+ A?� is worth?

&#39;11,. =15, +A&#39;wF.4 57 é°1H�H°* [1t(1�*Ru) +A~&#39;r&#39;(r-3.)]
I 

To see this resolve 1}! into its even and odd
parts. 1r_=G+Il.

Then i any =_e --U
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This shows that from a given lattice function satisfying the

boundary conditions we can construct a worthy function sat-

isfying the conditions also. Another worthy function is

�Far3 =1-(*3; "A§]() -

In terms of these .\|r"=(irw&#39; - ow�)/3.

C re to

A worthy lattice function is a worthy function.

Although the cellular part of a worthy&#39;lattice func-

tion is worthy about the center of the cell, it is not ob-

vious that the lattice function as a function throughout all
space is worthy shot this center. To prove the corollary,

make the cellular part moral; this can he done in accordance

with definition of the worthy lattice functions. Then, we
% find

A?" = Z e1"&#39;R-t i�q&#39;r(r - R�)

and air" = %(t|r� + A?� ) . We have seen, however, that
a function of this sort is moral. Hence, a constant times

�our worthy lattice function is a moral function which is what
we wished to prove.

So for we have considered the functions worthy as

regards their behavior about one of the sets of lattice points
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only. Since both sodinms and chlorines are at centers of

symetry, it is of interest to see if making the function

worthy about one set of lattice points makes it worthy about

_the other set also.

I§EQEEE�;;&

In a lattice containing two sets of centers of

symetry, a function which is rorthy for one set is worthy

1 l
.e 
1 r-&#39;
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1
for the other set, and the phases of the moral functions are

given by the same wave vector for both.

2222:

he first note that the method of setting up 1]:

insured that the function be moral about the point at the

origin, actually moral throughout all space. We can then

write �Jim as G0 -1- iii�, . Let the displacement from the
origin, which is a symmetry center of the first set, too

symmetry center of the �second set be /0 . Then there is a
symetry center of the first set at 2,0 . About this second
center

it � = e12"&#39;(° is + 1U 1 . Therefore
11&#39;: = %_o1�r&#39;f&#39; Sign�? [GT-s� 1130]  oi�? {G2f+ i�gpil}
.-.-.39.-.3173-f�/4?  [G0 + G%°]- 1 sinava [I30 - Gzfl

&#39;+ . sm�.P [go - u%°]+ ilcosa-/0[U°.+
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About the-c t t G iI on or a /o , 6 + 62/0 and U0 U2/0
are clearly even, whereas the other two functions are odd.

Hence, the expression in the brackets is moral and the phase

is e1 H�/0 .
I� Q&#39;lE¢Dn

This shows that we need only consider moral functions

around each type of atom. The lattice functions are built

up of these by suming over the cells.

There is one further theorem which reduces the nuns

�her of boundary conditions considerably. If we look at the

cell centered about the Cl, page23, we see that there are

three kinds of boundary surface: (1) 01-01 boundaries at

the surface of the cell. (2) Ha-he at the surface." F

(3) Ha�Gl inside the cell. The boundaries of type_(l) are
the same as those not with in metals and need not be discussed
here. The type (2) boundaries are fictitious. If we make use

of-worthy functions, the wave function around a given. Ha

will be the same; no matter from which cell we approach it,

and, hence, these boundary surfaces do not actually exist.
The boundaries of interest at to present time are those of

type (5). In a given call there are six of these, and, if we
attempt to satisfy the Slater conditions (continuity of w &#39;
and the normal component of grad V) at the midpoints of these,

we will get 24 conditions. The extra factor of 2 is caused by
the fact that the use of moral functions requires the fitting
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of real and imaginary-parts separately. Fortunata1y, ye gan
show that the actual number of conditions is only half this

many, some of the faces being equivalent. Lt-us call these
boundaries of type (s) internal faces.

EQEQREH III,

&#39;-If worthy functions are used and the boundary condi-

tions are satisfied on one internal face, they are satisfied

on the other internal face paired with it by the center of

symmetry.

hug;

The proof is very simple. Suppose the wave function

$ is worthy and satisfies the conditions on one internal
face. Then the wave function aw obtained by operating with
the center of symmetry certainly satisfies the conditions on
the other face, and so does the complex conjugate R? of

at .o However, A$�= ¢ , therefore w satisfies the condi-
tions of both races. 

&#39; Q.E.D.
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VI.

FORHULATIGH BF ?EE-BGHND .Y GOHDITIGHS

So far we have discussed the method of calculating

the wave functions for_the various surface harmonics and the

»general aspects of the boundary conditions on the save func-

tions. The next problem is to see how we can utilize the

results of the former to satisfy the requirennts of the latter.

The general method of attack has been that discussed

by Blater.** He required that the wave function and its normal

derivative be continuous at the midpoint of each face separa-

ting two atoms. He shall demand that these continuity condi-
tions be fulfilled at C-Cl and the Hacl midpoints. These

nidpoints are Judged to be mch more important than the Ha�a
midpoints on the basis of the ionic radii of the two atoms,
which are such that the Na and C1 ions touch and the C1-Cl

ions.a1most touch one another, while the Ha�a ions are quite

far apart. A photograph of a model of Halite shows the rela-

tive sizes of the ions. From this it might appear reasonable

to Join He and C1 at their ionic radii. In order to Judge I
whether or not this was sensible, the total lattice potential

was calculated along the Hacl line. For this calculation,

Hartree|s** fields of the Ha+ and 01&#39; ions were used without

1&#39;1&#39;$&#39;IZ|&#39;-IE-�&#39;--1-&#39;FI~£�IZ-I-3-iril--�1L-1--I-&#39;1-I-1--u2�I-1-I -Inn-.-II-v�:--nu-�II-�vI-.�|p -an-I--I -I�-�|- .-I-_n§..�.n��. -u�.1.:-g...:1..-p;..:�n..�u1;�...._- .�p�&#39;-..-.._.._p.

"&#39;3. c. Slater, Phys. em. 3;, 794 (1934)..
&#39;-I--I-D. "a. Hartree, Camh. Phil. Soc. E, so (1928).
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alteration. -It was.fcund that the pctential had a very flat maximu
near &#39;

th_e- midpaint. F1-em it we should be inclined to cheese the

� Hacl midpoint �for joining. This procedure isalsc suggested
by the ,3 (£ + 1)/r2 terms  the wave equation. By

&#39;_chc-esing the midpcint, these are made equal fer bath� atoms.
The next questicn is what these hcundary eenditiens

require of cur worthy functions. Let the neural functicns fer

twc serts of atoms be

Cl g(r) + iu(r) =_q1(r)
(6.1) -

i Ha z1(r) + iu1(r) = e1(r)

d
Then ~r= Z e1"&#39;�°*ep(r-H.) +§e�"�3�e=r>1(r-59)
where the Egg represent 01 lattice paints and Big ,. He.
The ccnditiens required fer continuity across the 110 01-01

face, fer example, are derived as follows. The wave function
in the cell at R = a(%% 0) is e13� R times the wave
function in the 0th cell. The midpeint is at 11/2 = %a(-%-&#39;% 0).
This point is We in reference tc the 0th cell and -R/2
in reference to thei.a(110) cell. The values of the cellu-
lar functiens at these points are thus g(R/2) + iu(E/2) and

eiw R[g(B/2) - iu(R/2).] . Similarly, the derivatives are
. glc�/2) + 1u|(Fl/2) and e�"B(-a&#39;(R/2) + iu&#39;(B/2)) where
gt �means .2; aleng the ling R  Fer spherical functions,
then, -3; is the same as 3-1; . Equating the values of t
-&#39;-s;.;"*s&#39;i;;;;":ea;;§§�§;aa;&#39;ia&#39;i;a;;i;a&#39;z;;&#39;;&#39;;3;;:�:saa5i;ea"a:;: 
cussicn.



and those "of 1:! , we find the conditions

\(6�_3i) - 1:-.an(R-R/2)g i+ u = o
&#39; g� +. tan(a-I-R/8)u&#39; = o .

For brevity, we denote tan(J-t-an/2) by T110 , ate,
_ .A1ong the Iiacl lines the conditions are found in a

similarway�. Let a C1 atom be at 000 , and consider the

midpoint at 3/2 = a(% 0 O). For the He cell at a(%�- 0 ),
this is the point �a(-i- 0 0). The moral function about the
Ha has the valne -:91 =..gl(R/2) - iu1(-�fl/2)~ and the �value of
%i 91(- M2) = - g::_(B./2) + in__{_(P../2) at this point.

The boundary conditions are thus

g(R/2) + iu{R/2) = elm. R{g1(R/B) - inl(I-I/2)] I

(6&#39;33;r<a/2) + in-(ad/2) = ie���e�[- gicn/2) + ngcn/2)]

These equations, as was noted in connotation with Theorem II,

must be separated into real and imaginary parts, since the
functions oi.� g and n are real. i

It is well known that such boundary conditions as

these are periodic  :4 space. In order to see this, con-
sider )-t&#39; = H� +. Bub , where �o is. a vector of the recip-

rocal lattiee. Then in Equations (6.2),
&#39; t tan n 1-3/2 = mpg -n/2 + .�wR-b ) ,

but "Hub is an integer or zero, so that tan)!�-R/Q2 = tan I-(+1-I/2.
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_Te see that (6.5) is periedic, we mast use the actual ferns
of the vectors R and b . The B&#39;s are of the form

- aG% G 6) and the b&#39;s of the form 1/a(i1 1 1). Hence,
nvb = c 1/2. This introduces a factor ct�; = � 1 an
the.right side of E which is hoogeneous in the He functiens

and can thus ahsorb the real factor -1 .
The periodicity in it space is not convenient for

practical purposes, due to the fact fact that 2:r&#39;b is not
a simple vector. In order to have a simple periodicity, we
replace � by. ssh/a . The lattice vectors in" k space
are then (1 1 1)? ( 2 0 0), etc. (i.e., k.spsce as body
centered lith lattice spacing 2.) The tangent teeters take

en a particnlarly simple form,

5:110 = tan-33� 23:11� (% -i&#39;.3=- c) = tangtsx + ky) ,&#39; fer example.
There are thus 24 equations to be satisfied: 12 cf

the c1-c1 type for the 5 different 1 1 e directions; is or

the_Ha�G1 type for the 1 U 0, 0 1 O, and O 0 1 directiens.

The &#39;1&#39; 0 0, c I e, and c o 1 midpoint conditions fallen� by

Thecren III. 
In order to satisfy these conditicns, we shall ex»

pend the various gis and He&#39;s in terms of surface harenics

will be needed. when the gis and nls are expressed as
linear combinatiens er these, the 24 equations give 34 condi-

% 
d
 -I
.- :51:
.. ticns en the 24 expansion coefficients. The necessary and suf-

. -....._.�-.- ..~� _-u-.�-u.-an-:-.-r~�_-4-,,

times the corresponding radial functions. 24 cf these fnnctiens



ficient condition for a non�trivial solution of these equations
�is that to determinant of the system of equations vanishes.

This determinant will be a function of the radial parts of�

the wave functions which are dependent upon the energy, -ea ,
and of the vector k . For a given energy there will be

certain values of k for which the determinant vanishes.

Heel values of k correspond to lattice functions and complex

values to damped waves, which are net of interest here.

The next problem is to choose the expansion fdnction

in terms of which to expres the g&#39;s and u&#39;s . There are

"several precautions which must he observed in choosing these.
In the first place, we must have at least 12 C1 functions,

in order to satisfy the 12 ccndi ticns of type 1 which do not
I involve the He . Then we must choose 12 more functions to

supplement these.� Let us consider first the case where these
are all chosen about the Na ion. For reasons indicated

below, this will be called the C1-Cl case.

Q1-Q1 Cggg

For this case we have 12 functions around the G1

and 12 around the Ha . The 12 01-01 conditions are homogen-

eous in the 61- functions and give rise te_a determinant
in k. and &#39;EE . Fhen this is solved for �k , the function
around the Cl will be fixed. The 12 Ha-C1 conditions will

not be homogeneous, but will relate the 12 Ha function co-





A satisfactory set of Ra functions are the follows

ingt

stone 
2 2 2 2

Mr) , �-�-��c-3"�-sD(r) , 3� �Z Mr)
1&#39;2 1&#39;2

1&#39; 1&#39;

5- 2 s 2 &#39;- 3- 2t - Kim sac,��5£�����§3�~E� F�r) , 5 Fm , 5 35 mo
133 1&#39;5 1&#39;

�- C so

The simplest set of conditions which will give dc-

psndonce on both Ha an� 01 functions will be obtained by

ignoring the C1-C1 conditions entirely. This leads to 12

equations of type 8&3 A.nstura1 choice of 12 functions is than



C1 X/I�-IT: 3"/1&#39;TT 1 UT�

5 . (:2 - ye)/1-Sn , (:3 - 22>/1-an

Ra 1/rP , y/r P ,~. �Z/r P

D9m.s_.Lo.:!si

By ehoosing more than 12 functians arsund the G1

and the remainder of the 24 srdund the sndiun, sets can be

Possibilities sf this type will he csnsidersd in Ssctinn X1,
obtained which will satisfy both sets of boundary sanditions.



VII.

9;. -0.; case

as was explained in Section VI, the Cl�Gl&#39;case is

Krutter. The relationship between k and E is given by a
12th oreer determinant which it is not practical to handle
in its full generality.

The purpose of the present section is to obtain ex-

pressions from which the values of k as a function of �E

can be computed for a sufficient number of planes and lines
in momentum space to allow reasonable extrapolations to he

made to all values of k .

In order to obtain equations which can he used for
calculation, it is necessary to restrict k to simple lines

or planes in the k lattice. when this is done, it is found

. that the resultant symmetry of the cellular boundary conditions

enables the 12 functions to be split into smaller sets, each

set satisfying the conditions separately. In the language of

group theory, this procedure may he described as follows:

The vector k" is so chosen that certain symetry operators

.of the point group for the lattice leave it invariant. These

operators-will clearly form a sub�group of the point Er��pi
and the transformations of the spherical functions for these

_operators will give rise to representations of it._ It is
tell known that in any problem having symetry, solutions of



&#39;Fa Y1 El� of duudacah-adron

from 100 d1 ractiun
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different symmetry types do not mix. In our case, this means -

that funetions transforming in.d1fferent were under the sub-

group (1.e., belonging to different representations) will

not min. In order to see how we can.spp1y these ideas and

to establish the notatien used in this sectien, let us cel-

culate the energy hands for- k in the 100 direction

The Figure shows the face-centered cell as seen

free the 100 direction. For k in this direction, the six

T (tangent) factors occurring in the equations

�&#39;Tg +~u = O

g�+ ru&#39;= o

of Section VI. , page 42 take on only two values:

Hence, the boundary conditions have symmetry of a square. There

are four one-dimensional representations of this group and
ens two-dimensionsl representation. The scheme of values is
shown in Figure ?b.

The value which these types give rise to on the

11s, 101, 11b, and id? feces and the e11, 911, oii, and off
faces are indicated in Figure 7c.
&#39; Let us nest-elassiry the 12 spherical functions of
the face-centered lattice, in accordance with the above scheme.
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In erder te sim�lify the expressions, we shall write a sur--
face harmonic, such as (x2- 2)/1-2 as (x2�yE)

like (110)&#39;e�cc., for which x2 + y-2 + 2.3 = :3.
The annex-ical functions are

3 Z ; (212 - Y2 - z2)£S , (Y2 � z2)A ; xvyi� ..zx�
u as: , y , zTl; mg - 23)» , :.-(23 - 2)¢».... zc-2:3 -= 5%:

When elassified according to 100 symmetry, we get.

Z; (212 - ye - z2)A , JITT
rg none

F3 (ya - z2)A , we - E3) 4:

I�; 32413 _ i
F5 _x3£§ , ITT , :r(z2�-x2)¢° %

IZA , zTT , z(y2-x2)¢> .

To salve these, are make the simplifying assumption that

at the cell surface;

Solution for F:
Let 3- = AZ. \-I- B(2x2 -  - z2)A

u=Cx-[Tl

The:a,_ fer the T011 = 0 face, we find that�
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Ad� _2s5=o ,9: s=-2%.
For the Tile = T face, we find

0&#39; ;.-s[A+-�n] +c�o
Aer +A-;§-+1&#39;ox=o

The necessary and sufficient condition for the existence

of a nontrivial solution of these equations for A and C

is that the determinant of the coefficients vanishes,*
c-T(1 + 28 I 1

= 9*: &#39;_1:2::(2s +o&#39;);(s5)+%o- &#39; .

of Krutteris 100 equations.

(loob) [&#39;5 T2 = � -§-

(l��c) f;= " Ho relation between energy and momentum,

the 100 direction. One of the symmetry types is autoaticaliw
zero on all the faces whose tangent factor involves k .
*For a discussion of homogeneous linear algebraic equations,
see, for examp1e,.Dickson �First Course in the Theory of Equations,"
Chapter VIII. &#39;
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The possibility of such an occurrence is an indication of e

eeskness in the Slater conditions as applied to midpoints�

enly. If more points on the intercell surface were used,

this flaw would be removed.

when kz is zero, the only symmetry operation:

._ehich leaves k invariant is the change 2 -4r -5 . This-

in respect to the powers of an . The odd nanctiens are

0= 21&#39;-A , 2313 ; In-iz-(I2-?�?�)¢ -L

The boundary conditions for this set can be solved_end give

(°°1°) [Tin + %5(% + $1 &#39; [T311 " %&#39;S(% + 5!� 3
i ;_1 3[am 9]

There are eight even functions in z . These are

Z,.(x2-r2)A, (12-z2)t�.3, rs�
tn: FTT: x(_z3-y2)¢: :r(z2-x2)¢� -

It is impossible to get a usable expression of the fern (001o)
from these.� However, the solutions in the 100 direction ere

I-l"_  . .....

requires the functions to be-split into even and odd functions



Jul. .1

uunteruu H-

,.. ,:_

a g I&#39;...:.h"



already given in �Ha� F; and rgl. Selutisns are else
obtainable in the 110 direction. Thse are given hy

Krutter and will be tabulated later.

3. A new Line 1;; the Qglglgge, Line I.

It is possible to effect a split of the even fune-

. tiehs slang the line k = u(lOO) + (010) in the even fune-
tiehs ef the 091 plane. The fundamental reason for this is

that the line k = u(10_0) + (010) is farmed by the inter-
&#39;seetisn of te 001 plane with an.0lG p1ane.1n momentum space.

_ This means that we should be able to split the fhhctians ihte

even and odd fer &#39;3r---) -3, as well as s-�) -z aleng this

-lam.

The tangent factors are:

_ u _ 3 I LT110 - tan§(u + 1) - - est Eu = C

l1gIi= tsn§�h.- 1) = - cotgu = - G
T191 = 1:an§(u) = T

T1oI = tang�) = T

T011� "�"&#39;§(1) = °°

TQII = tan§- = as .

Figsre ?e shows the symmetry of the tangent factors, which

is the algebraic csnsequenee of-the symetry statee_aheve.



mean

It is of interest to point out that similar lines

exist in the face-centered k lattice for the body-centered

space lattice. one of these is in a 100 and a 011 plane,

another is at the intersection ofna D11 and OIT plane. See

7ft 
Snlitting the functions according to the above

scheme, we have:

Efveniny AZ.B(9=-K2-72-z2)A. D(Y2&#39;32)1_b

Ex-n , Ex(z2-y2)¢

oddinzr A-HA. B:rTT.C&#39;v(z2-x2)¢ .

m

Since there are five functions in this set, the

boundary conditions will lead to a fifth or�er determinant.

Some of.the_1abor involved in expanding the detetminant can
be avoided_by eliminating one of the coefficients before

setting no the determinant. The conditions on the 011 face

BIB _

E =&#39; [11 =&#39; 9 �I

The H� is automatically fulfilled and the other gives

(on face) A � 23 &#39;= o_ . or B = %A. -

Heine this value of B in the other equatios, we have

- - � �-j._.-.-...�-..-- - -- .-- --- - -..- -- --- - ,-



"""-&#39;-&#39;-7*----&#39;-T--�---�..... ..._.. . .
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(101 face) 
-TIA + -3-2;; - B] +[E + F]: 9
{Au&#39;1-%�y5 � D§] -+ T[Ea + F¢] = 0

�(11D_faee) 
c[A+%s.+:� +[E-F]=0
[M-+ -é-.qS_ + 138] - C[E:r - Fey] = 0 .

The �eterminant of the eeeffieients of A, C, E, and F is:

(1) - 3 tr T 1 1

(2) u-+ S -8 T1: T9
(5) 30&#39;. c 1 -1
(4) tr + %s ~ &#39;8 -c,..- ..c..

This determinant is most readily expande� in terms of miners

of the first two celums. The main advantage ef this procedure

is that T and G ean.be factored out of the terms and that
To = 1. Letting 1: stand for tr + ( 8/2), and indicating

the revs of the miner in parentheses, we get the following

terms for the expansion:

- -- &#39; | I f If ..-..._e-_-.... . . ._._,__,__,__._._"_-I _�
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(12) -1.5. 1 1 -1I I =&#39; (8-o&#39;)(<P - u)I -S -3!� cp

(1:5) 7 -1.5 1 an.� 
. ""&#39; 34"?

&#39; 1.5 1 �x

(14) +132 -1&#39;5 1 if �(P = T2( a- + 25)(:: + q))
I _S 1 -1

(23). C2 I -8 1 1_= 62C tr + 2 SN» + G?)
1.5 1 �x ¢

(24) In H -S 1 1 = 2(   2 0-)
H� 5 1 -1

(34) 1.5 1 1 1 
&#39;= (S -00(9) - it)

n" S H 9 -

Collecting terms, we obtain the-expressian

Ia <w3+c3)<2« +s>(«+«p> + 2(s-um--«> +
+ 2S(s-4_- 20&#39;) +6mp =0 .

Since T362 = 1 , this is a quadratic in. T2 for which
the solutian is I



2=_B 2_ B_ S�-er -u+$+u"T §t.J(e/2) 1 with E-� 35+� VHF

Q��_1._1;.
We may eliminate C hv�the&#39;01l condition, which

gives , _
L" Bx-I-Co=0 or C=�(x/qa)B . The

determinant is

1 _&#39; - 5TC (1+Q 
=Q qr

S �G(2«)

2 _ &#39; S _; _;Ib  -I»

This completes the investigation of the even fune-

tions of the 001 plane along the lines k = u(100) + (010) .

Let us now see how the odd functions behave. One solution of

Equation (001o) when T011-9&#39;00 is given by

2,5.-;;Ia T � 2 (x + ¢) .

This is obviously a companion to 1b above, and will involve

the functions I _ 
,&#39; z� ,z(x2� 23¢� -

has been slipped through the net;

2:21�).

The function yz�

however, remembering its behavior in the 100 direction, we





see that it gives a zero width band with

Id S=oo ,

lane

For the o1�&#39;:&#39;&#39;[&#39; plane 1:}, = 1:3 . This means that we
can split functions int odd or even with respect to the re-

flection y-�i- z , z--�I-jr .

; T e &#39; et o 1

The odd functions are:

�A(Y2 " 52)-A 1+ B 7-5 (3"_  3)A 1� C(7 "  s D X (372 &#39; 32)¢
E t [3422 - &#39;2) - z(:r2_ -- x2)]¢° �

The tangent factors are shown in Figure ?g. It is necessery

to consider only four directions for the tangent factors.

The other two possible directions, lib end 101, are equivalent
to ldi and il� because of the GIT reflection plane.

Before setting up the determinentel condition, we

&#39; shell eliminate the coefficient E . GIT gives 3* = 0
and u = O . The first is eutometioelly fulfilled for the

odd g functions." The second gives

II 
II 

(&#39;2 I+2c+_sE=o or E

"""�?"-1|-i -I 13 1- .�I�-A--�--:�-�j-.�... . . . ... . . . _ jg
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The other conditions come from 16$" and 110; none frum 011,

since all the functiuns vanish there.

(1o�i&#39; race)

~L(�A + B) + C + C - D = 0

�(-118 +138) +L(Gx+c¢p..]3q;) =0

(110 face)

�-K(A+B)+ c+C+D =9

(AS -I-BS)-+_I£(C:r+Cq:-1-D) =0 .

If the determina�t is set up and expagdad, we obtain the
expressian

� 2 S :.:+:5 2___ S ::+ 3 5é:r~=-33} 3&#39;(0116) I (T110 + 24]: 1:-Hp )(T3.01 + 2:1: it-I-q&#39;.&#39;a ) [29 at-I-qr :\

E1,7_&#39; , (2:53-32-z2)A , MA 1. x(:r+z)A
JITT, (¥+ z)TT , [HIE -=- 22) + z(x_2 =- 2)-_\�3P

Far the even functians we are again re�uced to sulutians in
special directions. Krutter has given the solutiens for the�
100, 011, and 111 lines lying in this plane. These will be

tabulated later.
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Two new solutions for the Gran function set have
been obtained. They are represented by the lines

II 1: = u(1oo) + %(*o11)
III - 1-: = (1 - u)(1oo) + u(01l) = u(T11) + -(Ion).

The arrangement of these lines in momentun.space is shown In

Figure 7b.

1, Line I;.

k = u(100) + %(o11)
The advantage of these lines is that they give rise

to simple sets of tangent factors, so that it is not necessary

to deal directly.with more than fourth order determinants.

There are four independent faces of the cell for functions of

the E type, Fig. 71. �The tangent factors are

_. .. H 2». .. H =

T*- = 0 where w = u.� i I
011 _ 2 . �

T611 = tan%(].) == co

We shall next arrange to ohoose certain linear com-

binations of the original functions which satisfy the sandi-

"tions on Oil and B11, an� then use these functions to satisfy



the four conditisns of 101 and ma. To do this, it is best
to classify the functions into type (1) , even in

2*�! - y

y--3» -2

and (2), -add for the same transformation. These are

g1: :12. B(2x -3� - z)A,A, 111: EXTT

Ac-23$ -s8=o .

The conditions on 011 give

A _ - BB + D = 0 .

Solving ror s and D , we find that the linear combination"

of the terms of gl which satisfy GT1 and 011 is

gl{Z+%¥-¬+1)(2:g2_y2__z2)+%(%�1)yzA} ) .
This fimstisn takes on the same value (arranged to be unity)
can both 101 and 1.10 (11: must, since it. is of type 1).

Its normsl_dsr1vativs on these faces is

(5o&#39;%+S)/(5+ 9�/S)=�{ -



A similar process can be carried out for the ug
type. The 011 condition then requires that

G: + He = 0 or H = - G �.4£ 
9

The linear combination

�2 = {Car-P z)TT - &#39;3?[F(-�£2 &#39;- 22) + 20:2 - ¥3)]<1->}/(1 + #/tn)"
has the value 1 and the derivative

2:/(1 + x/@) = p-&#39; on 101, and minus these values
on lib;

We can now replace the original 7 functions by the

, four functions

-F1E1;FX(3"""Z)3: EXTT :G�1g *-
These functions satisfy all the conditions on faces Oil and &#39;

011; the E and F terms, because they vanish there; the�
g1 and ug terms, because we have so chosen them.

�I
The conditions on the other faces are

{1o1)
..(-c)[,q+F] + E+G- =0

3! + F3 1- (-C)[E:r + Gp.]= D

(�c) _ .
%  I -&#39;I&#39;[A � F]. + E -. G = 0

A3 &#39;-�FS -!_-T[E#--G;.L]=O
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C C 1 1

�K S «-01: -09. _ 0
-T T 1 -1

X -� 5 Ta: -Tp.

Expanding in two rowed minors of the first two colnns, we

easily get

I18 (C2*&#39;T2)(Y+5)(#"&#39;l-1») + 2(S-u&#39;)(r1-#)+4uu+4xS=C

Remembering that CBTE = 1 , we can solve for T2

g_-9sa»;~:a2_1 , when a=  
(r+S)(u+s) .

Another solution along line II can be obtained from

oiie , the odd solution in oii�, by replacing Tim by c2
and Tidi- by-T2 . This is not partioularly useful, since
the odd set-can be plotted for arbitrary k . It gives rise

to an expression of the form

I13 a(c3+T2)¥I~b=o .

2The symmetry in C2 and T shoes that an increase
of &#39;% in the phase will give another solution. Since the
phase 13 %&#39;w = §(u � 1/2) , this means an increase of 1 _
in u . From Figure Th? this is seen to be just the correct

periodioity. A change of +u to an is equivalent to inter-
- changing C and T , and leaves the equation satisfied. 3



In-q pa...



the condition given by u.= e ,__c2 = T3 = 1 with that oh-
teined from the solution worked out for the 011 line at the

same point. The details of this cheek�will not be given

here. However, a similar check is worked out as an example
on page 71,

8. he n I I k = V - + v 0 1

This line is equivalent to
k = (1 - v)(l00)+v(Oll)

This line, like line II, has a relatively simple

set ef tangent factors. The? ere:

T101 = tan%(v = l_¥ v) = L cot st = u C

2011 = tan§(2v) = tan e? = T

_ g _ _ =T110 � tan2(v l Y) on

Toll = 9

IIThe conditions an all give g = e and u 0 ; en ell

g = 0 and E-= 6 . Of these, the cenditien. u = 0 en
Oil is automatically satisfied for even funetiens f the

all plane. We shell preceed_as for line II. Linear cemhinaa
tiens of g and u. functions will be found which satisfy

the cenditieus en faces Oil and lib. These will then be used
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to give a fourth order determinant for the conditions on

011 and 1o1.

The even functions of this plane are:

I1 Z 3 B[2x2 -= 2:2 _- 22 -2:rz + x(:r + zila�-&#39;-5 , DNA, Ex(:-r 4- z)A

Fx� , G &#39;%(J£ -Ply + Z)" , H[y&#39;(2.2  1:2) + z(y2 � 1:2)-]¢ .

Here certain linear combinations of the A and TT -func--»

tions have already been made, in order to simplify the later"

expressions. The condition on the g functions give

(oil) A: -98 =0 or o -33-A

ll 
:0- 

II(�e) A-E=U E

�Hence, eliminating D and n , we fine that there are
two linearly independent g functions satisfying the con-

ditions on GT1 and iic. These are the B function and

I Ag�: +  are + x(&&#39; 71&#39; z)]5} «-
The oondition of ITO on the u �functions gives

Fa£"&#39;E:p=0 or H=-at/-zpF.

Hence, the n functions to use are the G function and

F{xTT + % br(x2 � 32) + z(x2 -_-  .
The conditions the other feces are then
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(011)

-r[(1+-952-)a-as] .-ea/aa+a=o
2:rA- ass + T[�2aF+ae]=o

(101) 
c [ea + ea] + (1 + %)F + s = 0
(:r+-S)a+ ass -c[2aF+ae]&#39;=o

The determinant of the coefficients of A B F G

is easily set up and, by expansion in the eustomary manner,

gives

-IIIe T2 �E-lfo"+S_) (a: + 25:9) . + (S =- 0&#39;) (GP -=- a) +-%§($+Paa&#39;) (EH5)
+ C2 (u�+ 2�3)(q1 + :1)!"-&#39;T&#39;2a + 13+ {:02

This leads to the quadratic in T2
a(T2)2 + b(T2) + e = 0.

Another solution is obtained from eila, tad odds
2 2 2
191 by C and T110of the Oil plane, by replacing T

by on . This necessitates_the vanishing of the factor in-

volving TEO1 , thus leading to

. &#39; 2 _,&#39; S e_+ S 3IIIb c - _ 2? # + $

If we regard this as an algebraic equation for x , we see
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that it is linear and has one root; this corresponds to the

fact that there is only one 11 function in the GT1 odd set.

In e it is qua�ratic, corresponding to the two V� functions.

In &#39;8 it is linear; however, there are two 5 functions

in the set. This suggests that there is another solution

similar to Id .

Such is, in fact, the case. The function

[org -V .22) + xcz - y)]A
is zero on 101, 011, and Oil. The conditions on 110 give I

IIIc &=U or 81-&#39;=o3 ,.

a zero sidth hand.

These two new lines, II and III, give a considerable

amount of.information about the contours in the oil plane, as

may be seen from the contour maps in the set of diagrams.

4 me

It was found that a reduction of the twelfth order
detereinant into two sets could be made along the line
k = u(o1E) + 1/2(111). It is observed that the interchange

of y and z changes k to at = �u{o1T) + 1/2(111) = �k_+ (111).

Since 111 is a lattice point of the k lattice, the inter-
change of y -and z reverses the momentum of the lattice function

from R to �k . This suggests classifying oer g and u
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functions into type 1, even for interchange of y and Z;

and 2, odd for interchange of y and 2 . If thia is done,

the cellular function for a solution of the boun�ary condi-

tions may �e written&#39;ae 
&#39;41 = (gl + g2) + i(u1 +1.12) .

Interchange of y and z will give u� , a function with

wave vector -k as explained above,

1*�! = (51 &#39; 32) + 10-11 hung) *

The complex conjugate $1 will again have momentum k .

From w and &#39;$F , we can get two functions

e + E� = 2(g1 + iug)

¢ - w� = 2(g2 + iul) .

Hence, we need only consider combinations (gl,u2) and
(g2,u1). All other lattice functions for line 1?. will be
merely combinations of tnese_types._

This same conclusion can be reached by a consideration

of the tangent factors. Figure 7k shows six independent faces.

jj��----- - �.--�....�.; _.--..-..a_-.--u.-u..--.. .1--.-up -------. -- -.- -ij�.:.-��j.-.-.-. - -





The tangent factors are:

r10 = tang(+u) = +T

.. if ....as - taet-u> - -T

.. 3 _

-- -I # �T011 - tan§(2u) - S

. _ if __T011 &#39; tané &#39; °°

We next note that g2 and u1_ must vanish ul must vanish
on Oil. This follows from the conflicting symmetries of
g. and 2 , and u and 1 on this face; thus

g2(oi1) = + g2(OII) by g property and = - g2(o1T) by 2
property; hence, g2(0Ii) = 0. The proof is similar for ul .
It is also erident that 2 type functions vanish_on 011.

Hence, there will be no mixing of (g1,u2) and (g2,n1)
on 011 and 01$;

Suppose next thatacombination of (gl,n2) satisfies
the conditions on 110. Then on 101 the tangent factor changes

sign, but so does ug -so that the solution is good there
also. �a similar situation is true for T1D_ana T�l. This

argument can be repeated for the (g2,u1) set. Thus, from
the tangent factors we again find that the solutions will be

of the form (gl,u2) and (g2,u1).
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The (gl,u2) set will not be worked out. It leads
to a sixth order determinant which cannot be reduced

further, since all of the symmetry conditions have already

been used. If it were very desirable to have the solution,

it could be obtained by a brute force expansion of the detera

minant. The functions of the set are:

a, z; .. no, x(y + no , <2:-:2 - yr? - 23)::

2 (Ir - z)� :- _x(:r3 - z2)¢&#39; .. [:r(x2 - 22) -=- 20:2 - :»&#39;S)]¢�

There are 7 functions, and the number of conditions are:

2 on oii, 1 on e11, 2 on 110, 2 on $10; or, 7 in all. This

_indicates that a satisfactory solution exists.
The (g2,u1) functions may be handled satisfactorily.

The functions are:

32 Ax(v - z)Z§ , BCYB - z2)£3 1

.111 1-Fat" , G&#39;(y-I-z)TT , H[y(x2-22) +E(:I£2-§i"2)]¢ .

we proceed as for lines II and III by satisfying the face

not involving T, C, or s . on c11, the condition is

g = 0 and n = O . The g condition follows, since we

have g2; the other gives

2nG � sea = o , H = + go .

Hence, we shall use the two functions of g2 , the F term, _
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&#39; and G[(y&#39;+ 3)" + $5 {&#39;_9&#39;(::2 - 2.2) + 30:2 =- 32)}
to satisfy the senditians on 110 and ITO. This gives

(110) 
: �(-C)[A+B] +r+ (1+§-)::.=o

$A+ Se -C[:rF+2xG]=0

(I10)
I 
re 
&#39;7" 

3&#39;9� 
+ 

£1: 
a 

"&#39;3 
+ 

d&#39;-&#39;\ 
F� 

+ 
Ilt 
�inn!� 
:3 

u 
c:

[-SA_+ SB] + T[�uF + sacs]II 
D 

O

The determinant is set up and expanded as usual, giving

Ea. (C2 + �I&#39;2)$:r(5 + 7:.) + 2[S2(1 + g) + 2:2] =, 0 ..

19, gngggg Q1 Iv. gag 1,

This formula gises an interesting example of the

type sf check which can be obtained where various lines cross

in R space.

Line IV intersects line I at the point 6% 1 0). At
this paint, 1;: = % for line Iv and u =% fer line 1.
Hence, all C2&#39;s and T2
this point. This means that for a solution en line I? we

is are unity for both lines at

must have



J�(D 2(8«i(5_+ §) &#39;+ 2[S2(1 +13) + 232] = o
and similar expressions hold for line I. If our solutions

are oorreot,  we should expect all the relationships which
satisfy (1.) to satisfy oertain of the four solutions of
line I. By inspection of the functions of lines I and II,
we see that the functions of line I? are contained among the

sets of line I as �follows:

Functions &#39; Line I

(372 - ZEEA J 3n I3-

x(y--z)3, (y+z)Tf, [y(x2�z2)+(:::2-3I&#39;2)�Z]¢ combinations of Ih and Ie

�Hence, we should ennect (A) to give two roots for 3 , one
of which satisfies Ia , and one of which satisfies Ib and

Io. Ib and Io are degenerate at this point. The same

statement should hold true for the u_ roots. �The one root

for- o should satisfy Ib and Io .

The roots of (i) for 8 , s and Q: are:

The oonditions required by I are:__

Ila (28+U&#39;)(::+<p)+(5-0&#39;)(¢P"&#39;�) _+_3(5+20&#39;)"&#39;5=*�?P=0

~--� I to-�:-�-� ---�--n��. . ..- .- - .- u - - . . _..j.........._...........�._._...:_:



The first roots, at = -S, satisfy Ia . The second roots

and the e root �� all three are algebraically equivalent --

satisfy It . Thus, the eheok is satisfactory.
This type of check is very convincing, sinee all

of the terms in equations Ia, Ib; and IVs are involved. The
same situation does not occur with the line III, for example.

Where line III crosses 100 and 111, some of the tangent factors

heoome infinite leading to oonditions of the form x = 0

or x = o. These usually involve only one or two terms of

I the expressions at one time, and an algebraic error of a
numerical factor wonld.not be detected. Such an error could

not escape detection for the check given above.



VIII.

I�� EEIHDD OF ig-$-Q

.Althongh we must abandon hope of getting usable ex-

-pressions for the twelfth order determinant for general

points in k space, it is still possible te carry eut csla

-eulations for a wide range of k directions,_if k is

small enough. This is true because it is possible to expand
the deterninantal equation in powers of k fer small k .

In order to see hen this is done, let us represent

schematically the twelfth erder determinants There are-5

g fnnotiens and 6 u functions in all; The conditions en .

e for 6 independent faces cf the duodechahedrcn give equatiens

of the form

(3.1) �Tg + n = 0

and the $1 conditicns are

(8.2) g"+ Tu� = 0 .

we will denote the 6 even functions by A151, agga ~**a3g6 ,
where the A�s are the variable ccefficients, and the six

uis by Blnl, -ea, Bang .
It is also necessary to use an index for the face"

. en_which the g&#39;s and nls. are evaluated. Thus, the t
eqnatien fer tne third face would be
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The twelfth erder determinant would then be

:~&#39;1.r

I I I T �I T I T I311 521 &#39; &#39; &#39; gel 1 11 1�21 &#39; &#39; * 1�e1

I I I I T I 1
516 526 " &#39; &#39; gee Teule e"2e * * &#39; Teuee

= 0

If this is expanded in terms of six-rowed miners of the first
six eelumns, there will be first of all a term independent of

the T factors equal to the product of the u an� g� minors.

Then, 1r we omit one row of the "gr miner and replace it by
a Tg row, we will get a term of the form

T2§5u5 gul .

By emitting still more rows of g1 , we get terms of the

form.
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. Tl2(gu&#39;)6 .

Thus, schematically we have

(8.5) (g&#39;u)6 + T2(g&#39;u)5(gu1) + T4!g!u)4(gu&#39;)2 + - . . = 0 ,

It is seen new that if either the g1 or u determinsnt vanishes,
we have a solution for T = 0 or k = 0 . The easiest way

for g� to vanish it for one of the redial functions in the

spherical functions gi to have zero derivative.� Then an
entire column of the g� determinant will vanish.

Suppose that the radial function does not have zero

slope but a very small slope,qsey.&#39; Then we can consider
powers of q" in 3.5. The first term will be of the first
power in q and all the others of q°.. This follows from
the fact that if we replace a row of the 3&#39; determinant

by s �Tg row, the_terms involving �Tg in the first column
&#39; will not have any first column g� as a factor.

Thus, T2 will be of the some order es q and
(8.5) can he represented by

(s.e) &#39;_ so + bT2 = 0

where higher orders of q are omitted. For small k ,
3 2eny rap is of tne for §¢(kx i kg) - Hence, (8-5) will

be quadratic in the components of k . .s1nee-our problem



-77-

has cubic svmetry, the only possible form is

(es?) q+(b/ajI(k§ + sf, + kg) = c . ..

For small valnes of q , q should he a linear function

of the energy. Hence, the equal energy surfaces will he

spheres and the energy a linear function of k2 .
How the process as outlined above is impractical,�

due to the great difficulty in obtaining the terms of (3.5).
However, in order to evaluate the coefficient in (a.?),
it is necessary to know the relationship_of k and q for

one pair of values only. This can be done from the solutions

in any of the three directions 100, 111, or 011. If the

energy curve is known in any one of these directions, the &#39;
spherical surfaces can be drawn in momentum space.-

So far in the discussion we have supposed that only

one of the g� columns was small. This means that we have
been dealing with s bands for cr "2" c . For the a hands:
the case is different,for 5 of the g� columns would vanish

the arguments presented for the case of a g� _
e n hand in whichrepeated for the-case of a u�?-=" 0 . Th _

= so . Thiswe are interested arises from s = 0 or s

causes three columns of the n determinant to vanish. Suppose
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_ nor that ff = q ,.a very small quantity. Then the a
determinant is of the order q3 . The T2(g&#39;u)5gu&#39; term

2 �in.-
involves q , since one of the rows in u� is replaced

by a Tu row for these terms. Such a minor #111 give

terms of the second and third order in .q and only the low-

4est order need be considered. Similarly, the T tern.wi11

be of the first or�er in q and all �ue others will be of I

the zeroeth order. For this case, then, s"...-5 is of the form

2(3.3) aq5+bq3T +eqT���+dr3+er3+. .. so .

2 is of the&#39;order of q and only theThis shows that T

first four terms should be kept. To see what this implies,

let us fix the direction of k and allow its magnitude,e9 ,

alone to vary. (8.8) will then be of the form

This is a cubic in (.92). hence, for a given value of :1
there will, in general, be three distinct roots of £2
each linear in q . What this means in the case of the p

bands is that there will be three surfaees.in momentum space

for each value of q . That is, the three p functions

give rise to three bands.
From the two cases consi�ered above we can oonolude
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that whenever a 3 function has zero derivative in its

radial function, or s u function zero value, �e will get

a set of solutions for k = 0 . For energies slightly

different from these, k will-not be zero and we will get
as many surfaces in k space as there are spherical functions
for the given radial function.

Thus for the s band we get one surface for energies

near to the energy for G $�o. For the p functions we get

5 bands for ::_"�=i-&#39; or; for the d&#39;s, 5 for 5 5- 0; for the f-�s,
5 for cp..=:.&#39; oo . Since only three of the seven possible f&#39;

_ functions are used, we should not place much reliance on &#39;

these bands. as a matter of fact, even the 5 d*s are not

right. This is a consequence of the fact that a field of

cubic symmetry, such as we have, will split the d functions

into 2 sets; 3 of the form xv , and 2 of the form. x2-32 . *
The occurrence of five�fold degeneracy in our case for k = 0

is an indication of weakness in the boundary conditions.

The method of small k can.be&#39;used.qnite conveniently
for the even functions of the 001 and.0ll planes. It is not
necessary to expand the determinant. The form of the poly-

nomial is largely determined by symmetry conditions and the

unknown coefficients can be evaluated from the known solutions
j�jl--_j_�I_1._%�_1I-_ ����-��"��� �-:1... --�, �-ii -j-�:-�g-���;F§-&#39;-&#39;--&#39;3-&#39;-ii�-:-*3.

TFH. Bethe gives a discussion of �Term Separation in Crystals�
in the Ann. d. Phys. §,§, 153 (1929). His discussion is not

_for lattice functios but for perturbed atomic levels.
However, for it = 0 his conclusions in regard to symmetry
and degeneracy are valid for lattice functions.



in particular directions. To see hour this is done, consider

1) bands in the D01 plane. Let %-= q .- If the energy be
expressed as "E = 30 + AT; where it-&#39; = co for �E = Ea ,
then,for small 15&#39;? , q _will he a linear function of the

&#39; energy of the form q _&#39;_�- «A3 . -Since there are two p

functions in the even set, we expect to get a second order.

�expression in q and fourth order in kg: and 1:5, . Hew-
erer, a large number of the possible terms in Fix and Ky
are excluded by the symetry. In the first place, the problem

is symmetrical for �kn: �-It -=-k
x _

in kx are present. Also, the expression must be symmetrical
, and hence no odd terms

in 11:: _ and 1:? . The most general expression satisfying
these requirements is

cf-a<x§+u;f)q+b<m:+x§)+c 3=o .

For brevity, are introduce the notation 1:: = x _,  = 3;
_ and get

qg-A(.&#39;x+&#39;_-,r)q+B(I2+y2) -I-Cxy_=0 .

From solutions 100a and 100d, we see that

2 38¢ 28
T110 _= &#39; £12 5 +c&#39;)&#39; °_r -" at + e "

For small 1: and :1 these give

2 2.
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Since the quantity --3 q occurs continually in these ex-
11&#39;.

pressions, we will denote it by t ..

�.§_ � é. "13- q- _�Ae .
#2 a-:2

Hence, for Is: in the 100 direction,

.(e.1o) 1.: = -
-&#39;1.

If we use the t notation, we have

2(3.11) _ 1.: + a(:: + };)t + -3:-.(x3 + 33) + ex}: = 0

For the 100 direction 3&#39; = 0 and

t2 + a::ct&#39;+ 133:2 = O .

Since this must lead to the two 1-eats above,

1-,3 + atx + bxg -_-l (1: + %5s"&#39;c_°&#39; ;x)(1-, + 28 3)
_ 2 ..1._ I &#39; .2__§._e: 2-�- t + 650145 + 5d�):-;t+ 6821&#39;. J: � 0

er 
_&#39; 1 I L _g8+a&#39;

To evaluate the coefficient «.3 we use the 110

solutions. These are 1103. and 11013 and they give

% _ git:-_2.;-;_ .._z.(3.13) It ""&#39; �a� 6  I 01&#39;  I



For this directien (8.11) reduces to

2t 4 eaxt + (2b +&#39;c)x2 = 0 .

Eqeeting this to the equatien derived from (3.13) we have

E18 + ?o&#39;(t + 6 x)(t 4- géx)
_ 2 __;_ £3$»4t 2 _-1: +6so,(8S+1Gd")xt+_12Sa_ x -O

or 
_ 1 _ 815

a-°-g§"$4S+5�&#39;) 1: 2h+ce _.

The fact that the value of "e" comes cut the same for Beth

directions is a check on the cerrectness of cur procedure.

Solving for e , we get

=:..*«_§_.:...E;-.-..° 12S*¢ &#39;

when the values of e , b , and c are kneen

nueericelly, it ie a etraightferward problem to compute
a series of values of x and y for a given energy and

make a plat ef the corresponding kx ky eenteurs. For
E = 0.35 , at = on and at = 0.4%. The other numerical

values needed are

q. S . a b c
0.151 o.2?4 7.46 10.5 5.55

 Erem these, the conteure fer £5 E&#39;= - 0.025 are eheen.
(e;ate 1.}



as for the 100 plane, there are tee p fnnetiens

in the even set far this plane. we expect then to get a

quadratic in t . In this plane k = kx(lO0) + u(O11)
and the symmetry requires that the&#39;qnadratic be unchanged�

by ex �a» ex and u-3"-n . If we denote kl-(2 by
x and n2 by V-, the allewe� quadratic is

(8.14) 1:2 + (ex -1- �ev)t + (atxg +/31:2 +B�xr) = G .

Fer the 100 direction, V = 0 , the rents fer t are feund

from 1003. and 1000 (as fer the same line in the 001 plane).

These-give 
_ 2 3 +d&#39; _ , _;t � - -�§1fEf x and a 25:3

or 
t = -r1 x &#39; an� e_aix fer brevity.

For the 011 line, x = O , we find

For the 111 directien, V = x, we find

.. 31.5551 =-f -t-�- VB X ran: and

We can determine the five eenstants of (8.14).fram _

.. .. u e�._...... j. -
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the six expressions given above. we find

1.93 3 = 1-1 -i- 81 , K: 33151

Oll b = 1&#39;2 1- 52 , /3 = 1-253

111 E. + b = 1&#39;5 4- 53 ,3�?-i=-X = 1-553

.Henoe 3&#39;: rass - rlsl � rgsg . �The results can be
checked from the a and� b equations. We should have

-I-s= 3 1-l+s1-I-1-+5":5 2 2 *

This equation is rea�ily found to be fulfille�o The numer-

ical values necessary to compute the constants of (8.14)

were given for the 001 plane.

The contour for 5&#39;3 = - 0.025 are shown in

Plate 1.

For the odd functions of the two planes considered

above, we nave exact solutions. We can readily get_the apu

proximation for R.-i O by making approximations in the
expressions; The expression O�lo is

[Tim + ese + e} [T311 + ese + %>] =
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F 1:-u-o he T2 -�E3 9. ;-#23or we ve 101 - 1-Rx , Toll - E-ky ,

%.=-q a small quantity. �aking theee eubetitntione we
find (neglecting powers of higher than the first)

2 � 1 1 1 2 1 1ii--(kx+ :=;;)(«§S$) +13 ;§+§g3%q =.}4.g9:§-%s3§-q

M. 
g_ _; 2 _2 _ _;_ 2 2 _ _

T�enoe, the oontoure ere circles. These tonoh the even

2 
3

As a matter of fact, we could have drawn the con:

function contours at the 100 direction where k = 0 .

tours without neing 0010 at all. Since we know that there

is only one p function in the 001 plane, the expression

for t must be linear in t and quadratic in k . From I

the Symmetry it must be a circle. From the solutions along

the 100 line we know_tnat there is degeneracy in the p

bend between the odd and even functions for l��d. This

would lead to the contour obtained ebove without ealculation.

Applying the methods used ehove to the odds of the

01$ plane, we get

&#39; _l 9 2 =(3.15) _ t -I.- 25(e-.x + u) o .
This is an ellipse, cutting the even function contours at



100 and 111, as is required by the degeneracy in the p

bends.

Eng Qgntgugs

Plate 1 shows the eenteurs drawn for the tee planes;

an estrapelatien from them to arbitrary sireetiens er a
space are alsa sheen. Fer a given energy, the allowed values
er� k fall on a surface having three sheets. One is nearly
spherical, I. Another, II, has the same traces as a sphere
in the eeerdinate planes, but is plucked out inte a eenieal

cusp which, with the ens; of III, farms a eene with the.1ll &#39;

line as axis. I

The centenr lines represent the intersection with

the surface of 111 planes and a set of six planes passing
through the 111 line and set sec� apart.

ce 11

It sneuld be pessible to calculate the eentenrs

for arbitrary directinns of small k. by extending the

above prncess. Fer arhitrary&#39;d1rectiens, the expression

will be cubic in t and sixth order in k . The expression

will be of the fern

&#39;(e.1&#39;r) :2 +/Du-.2 + at + C = e I ..
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A, B, and C are polynomials ef the second, feurth, an

sixth degrees in k . Due to the cubic aymetry, these

must be of a particular form. The meat general ferma are

easily seen te be

__ 2 2 2
A-a(kx+k +152)3*

_- 4 4 4 2 2 2 2 2B - b(k::+k:,r &#39;1�.-3:5) as ea + kfae + eke
C = c(ki+xE;+k§) + X[k:(k:+1&#39;£) + k:(k§+1_i§)

+ k:(k:+k§)}+ <1(k:kf,k§) .

-There are Just six cenetanta.here and there are nine known

aelutieas fer the three directions 100, 011, and 111.

Frem these, it should be peaeible to determine the values
of the eenatants and have three extra eenditiena available

fer a eheek. The aelutiens for E would be carried eut

ey eheesing the direction ef_ E and aelving equatien (8.17)
which would then be a cubic in |k|9 ._



IX.

ggeaons 0F COHSTRUCTIHG CGNTDURS

FOR THE FACE-CEEIEEEQ LATTICE

So_far we have discussed lines and planes in momen-
&#39;tnm space. What we ultimately desire is the relationship

of energy to momentum for all valnes of momentum. Due to

the cubic symmetry in momentum space, all representative

momenta are contained in a segment being one forty-eighth
of the first Brillouin zone. There seems at present no

method of obtaining solutions at interior points of the

segment. However, we can extrapolate with some confidence
to interior points from our information on the surface.

The Plate ? shows a portion of the body�eentered
k lattice and the fundamental segment. The latter is

outlined with the heavy solid and dotted lines. It is

bounded by 100 an� 119 planes and a piano bisecting the
line between nearest lattice points. Our first problem will
then be to calculate the conditions on the boundary surfaces.

Odd Set

The S1ater&#39;oond1tions give the expression



for the odd functions in the 001 plane. For a given value

of the energy, the coefficients involving , x, and a

are fixed. It is then possible to compute the allowed

values of T101 and T011 and the corresponding values

of Ex and K?
Values of If , s, S , and up used for these calculations

, thus getting a curve in the kxhy plane.

are given in Table III. The corresponding contours in k

space are shown in Plate 4.

Even Set

For these we have the solutions for small is and
the lines l0O,_l10, and I. The results of the calculations

for these are shown in Plates 1, 2 and 3.

Correlations

as we have seen from general considerations, there

are three p hands. That is, for a given energy there
will in general be three surfaces in K space for which

solutions of the Slater conditions can he obtained. From

the information at small k we can give these surfaces
nunhersas shown in Plate 1. For certain energies; one of

these surfaces gives the traces in the 001 plane shown in
Plate 5 and set, We do not know the traces of the other
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two but only their intercepts along the lines of Plates

2 and 5. However, we know from symmetry conditions that

the traces must he perpendicular to these lines in the

001 plane. .We also know how these traces behave for small

k . Using this information for a start, we can follow the

intercepts along in the plane and sketch in the curves

"shown in Plate 5, even set.

It is to he noted that along the dotted.lines in

Plate 5 the energies are the same. This fact is important

in-the later work.

Qll Blane

The.odd functions can again be hnoled separately

and give the contours shown in Plate 6 for the Oll plane.

.For the even functions, the situation is soewhat

more complicated than in 001. The intercepts for the even

functions are known for the solutios 110a, ll�b, Plate 2;

111a, lllb, Plate 3; Ila and Illa, Plate 4.

We note that among all the even solutions there

is only one orossover of the energy contours. This is

at the point where 110a and ll�b cross. In order to have
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be done in only one way, as shown in the adjacent figure.

The contours drawn from these alues are shown on Plate 3,

Egg lll Plane

The 111 line normal to this plane at %(111) is
a 30° rotation reflection axis. (Plate 7.) That is, rota-
tion through so° about the 111 line and reflection in the
plane brings the lattice hack to coineidenoe with itself.

Sincathe reflection does not alter the contours in the
plane, tese oontoors must have sixfold symmetr. Ehe

further symmetry introduced by the reflection planes 110

and 100 of the lattice shoe that the contours.must here

the symmetry of a regular hexagon. The elementary region

of this hexagon is a 60 -.50 triangle of which the hypotenuse

is the line I?. The other two sides lie in Oil and 801

planes and the connection between energy and momentum along

them can be interpolated from contours in those planes.

The symetry of the regular hexagon requires that the eon-

tonrs he perpendicular to the hypotenuse and the longer

side of the 60 ~ 30 triangle. These conditions should be

sufficient to enable fairly accurate contours to.be drawn

on this face.

The calculations outlined above have not been car-

ried out in this work. The line IV was developed after

the space contours eere alreadY drawn 335 it did H9? aPPE3P
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worth while to try&#39;te make than mere accurate. The above

discussion is given in the interests of campleteness in

regard te selntiens fer the face�eentered lattices

SQaQ§&#39;Ccgge1gt;on§

From the definitions for small k , we see that

surface I is the innermost surface in k space for a

given energy. This can he restated by saying that for a

given K , surface I has the lcwest energy. Surfaces II

and III have the next lowest and highest energies respeet-

ively. (It is noticeable in Plates 2, 5 and 4 that the

_trend is far 3&#39; ts decrease as l kl. increases) Utiliw
sing this definition, we see that the traces of I and II

are mixed between add and even sets of Plate 5, �the traces
ef surface I being obtained from the lower energy regiens

of the tee sets, II from the higher energy regiens.

A similar situaticn is true for surfaces II and

III in the all plans. It is difficult te estimate the
lines of degeneracy on these, but the location is indicated

approximately and the choice of which eentenr belengs to

each set is sheen.

when the centeurs are knewn in the beundary planes-

ef the fundamental segment, .Plate ? , the surface in k
space can be drawn. Since the 100 and 110 planes are .
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reflectien planes of the lattice the equal energy surfaces must be

normal to theme This puts fairly stringent conditions on the
behavior ef the surface near the edges of the cell.

On Plate 7 is another View of the k spaces The

fundamental segment is indicated in heavy lines. eelid
lines are these fer which selutiens are knewn. The ether

figures ef Plates 7 and 3 show the surfaces as drawn for

the same view. To aid visualizatisn, they have been contin-

ued by repetition of the fundamental segment twenty fear

times.



- 94 _

3�?

�g-Ql CUBE-CUBE JOINING

as was discussed in Section IV, the simplest

way of setting up boundary conditions which involve both

Na and C1 functions is to disregard the Cl-C1 midpoints

and retain only the �a�C1 midpoints. If the wave function

around the Cl is g + in and g1 + iul around the He,

�then the boundary conditions for the 100 midpoint are

&#39; in asa + in = e 190 [21 - 1111]
3&#39; + in.� - ei" 41100� Si + 111;} .

H �-3100 = (23:/a)1:x(a,/2) = max .

The wave functions which we shall use are.

C1 Zr{x2&#39;Y2)A1 (?&#39;2"Z2)A 33111371-i.rZ-I-T

Na ts,(x2- Em . (2-&#39;2-z2)D ,xP ..yP ,zP .

Since the surface narmonies are evaluated at the same radius
&#39; in every case, we are Justified in leaving out the factor
2-"9 . we shall assume that Z =TT=A= s = P = D = 1
at the midpoints, and that the derivetitres are 0&#39; , st, 3,

s, p, and d respectively. (It mat be noted that the

values of *3 , s , 8- used in this section are evaluated
at the Ra-Cl radius, rather than at the Cl-Cl radius.)
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The methods employed in obtaining solutions for

these boundary conditions are the same as for the 01:01

type. We choose such values for k that the functios can

be split into smaller sets in accordance with their symmetry

types.

��iw &#39;

For this plane we can split our functions into

even and odd for z ��r -2 .

Odd set of 001 Plane

There is only one odd function from each atom,

the entire odd set being

CZ-[T .,. HEP 4:

_These functions vanish for the 100 and 016 directions and,

hence, the boundary conditions on those faces are satisfied

trivially. For the 001 face, )1 -B001 = O and We hafé

i C = � i H

_i Cs = i Hp

and the deterninantai equation is

#+p-=8 at

when the energy is correct to satisfy this equation, there



_he negative.
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will he a solution for all values of k in the 001 plane.

This is a rather aggravated form of zero width hand and

indicates that the boundary conditions are none too satis-

factory.

It is worth while showing, however, that this con-

dition gives roughly the correct energy for the case of large

separation where the band is very narrow anyway. At large

radii, the eigenfunctions for any given atomic level are ex-

ponentially decaying functions of the radius. For these,

it is clear that dw(r)/dr (= e for our Cl functions) will

If the energy is shifted slightly from the

eigenwert, then the function becomes a mixture of positive

_and negative exponentials, and, since the pesitive will

In the immediate

will run through

usually dominate,� w will be positive.

neighborhood of the eigenwert, however, w

all negative_valnes from O to � as. The range of energy

valnes for which w is negative form a "p hand."_ For

large separation, then, these bands are very narrow, and,
-F�-0-since w + p = 0 can be satisfied only foo w - p , the

energy must he in either the Cl or the he p band.

It was a line of reasoning similar to this which

I led us to eonclude that even for the Clecl Joining conditions

_the zero width he bands would be approximately correct for

large separation or Xeray levels. (Section l�g)



Even Set of 801 Plane

The remaining ten of the twelve functiens_are

even in the 001 plane. It is obviously not worth while to

attempt to get a general solution for the plane. Censequentu

ly, we shall consider only special directiens.

100 Dizectieg

For K = (K, O, O) we can classify cur functions

eecerding to their evenness or odéneee in 3 . This gives

"two sets:

ode 1111.7: 01, yTT ; ea, 3:?

Even in y: the remaining eight functions.

t I 1.-..-.�.:-u--...u-u.-nu-..j -----�-�---�---...�..�._.......,._ ,�-_t r .. ..1,_ F. _

The one in 3; set is: formally identical with
the odd in s set. It gives e + e = 0 as the conditien

fer a zero width band in the 100 direction.

The even fnnctipn set satisfies eight oenditiens:

four on the 010 face {equivalent to 001 far this symetry)

which do not involve R , and fear en the 100 race with de.

It is possible to eliminate four of the ceeffieients ey

neing the 019 face and set up and expand the resulting fourth
order ceterminant for the 100 face. The resulting expression
.13 very invclved an� cemplicated.- In view of the unsatisfac-

tory behavior of the zero width hands, the effort necessary
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in erder he eeleulate the eighth order bend did net seem

worth while.

110 Direetien

The edd in 2 set hee.alreaey been worked eut.

for all direetiene in the 001 plane. The even fanetiene

may be split into tee sets, aeeerding te their symmetry fer

interchange of x ané y .

The odd eet fer interchange of a and y is

«:1 «(=3 - :r�E&#39;>A , /six w :9-;=&#39;I&#39;I&#39;
Na Mag - 3*&#39;2}D , e{:«.: - YEP -

These functions vanish en the 061 face and satisfy the bound-

ary ceeditiene there trivially. Due tn the symmetry, we

need eeneider only one ef the 100 or 010 faces. For the

100 face,

i�+Re. 133 = ees e ax + i sin a ax = c + i e .

The beundary cenditiene than give

or; + 1/6 = (e + 1_s)(a- 13)

at 8+ 1/51; = (e + iS)(-1&#39;-LG. -1- i�p}
OI�
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�= eh-I~sB

fl: an - eB

ot5=-ec1A- a

/�e = - sea + cpB &#39; .;

The resultant determinant is

1 D -c -5

O 1 -5 c

S. G ed ep
G a ad -cp

when this is expanded, we get

s2(::p +Sd) + c2(_da = pg} + tip + as = {E .

This expressien can be written in ether farms by making use

ef the relatien 52 + e2 = 1 e The ene ueed fer ealceletion

WES

-1  :5 «

It was feund upen calculatien that the right-hand aiee was

practically a linear funetiea of the energy when its value
lay between 0 and +1 . Reece, the energy was a cosine

functien ef kx ..
The even functiens for the 3-? interchange must

satisfy six cenditiena. as for the even functions ef the
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108 line, the labor necessary te ebtain a selnticn did net
appear te be jnetifiee by the accuracy cf the cube�cube

appreximeticna

GIT Plane

For this plene, the separatien into one and eten

fnnctien fer y and 3 interchange can he made. The end

set is

cl ore? - z�*f�")A , /6 (:7 ~ 221&#39;!
Ea Afyg � e�)D , E(y m s)? .

These fnnctiens take en sere value en the 100 face. The

$10 ane O01 feees are equiva1ent,ane tee either we will
plainly get the eeee cenditiens as we feune fer the 110
line in the 0&1 planet If we express R as {kx, n, n),

we will get the eenditien

,. 2 _ gg ~1;,,::%%e+S§
S.1.ni&#39;IT11""=&#39;=&#39;{p_d�m8

fer the existence ef e selntien fer the see set. We eee

that there is ne reletien between energy ane mementnm in&#39;the

100 eirectien.

The Even Fnneticne ef the 91$ Plane

It is ten difficult te ettempt a general selntien
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for these. Of the three simple lines in the D13 olane, the

10$ and 011 types have already been treate�. Only the 111

line remains.

The 111 line k = u u n is a threenfold axis

in k space, and has a symmetry group isomorphic with the

permutation group for three objects. This group has too

one-dimensional representations and one two-dimensional rep-

" resentation. For the trivial one-dimensional representation,

the function will he

Cl _o(£&#39;,/3(x+:,r+z)TT
Na AS, B(x + y + z)? I .

The odd functions of the 013 plane clearly do not form a

one�dimensional representation (rotation tnronghnl�oa certainn
e ly gives a linearly inoependent set of functions). Hence,

the remaining four functions

(:1 (ex? - 32 � a2}A , {_2x&#39;- 3* --» 3}�

Ha (2:23 - 3:2 - 23):} . (Ex - s �- 2:)P-r

must also belong to the too-oimensional representation, and"

the condition along this line must be given by.�

~-�-�..:�-.;-�.u-u-nu
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2 _ &#39; %E_+ wggd + 53sin an � �. P _ d � __s ,

We can get the condition for the one�dimeneional
representation without calculation from the ahove expression.

Since only one interface need be considered for the 111 di-

rection, the only difference between the conditions arising

from the two- and oneedimensional representations will be

that the _d functions are replaced by 3 functions. Hence, _

the result will be

. 3 _ + w 5 +l7_sin a-:11 - ~ fE&#39;ip:��_�-3%-E"f;�El_-g .

o c nin he P amet re

In making calculations with the above fornnli,

it is necessary to use the same energy for the wave functions
of both atoms. The wave_functions themselves are solutions

of_the were equation in the field of a 01 neutral atom (ion

less a hole of one electron) and e Ne+ ion. Let the.positive

energy parameters of these solutions he an (denoted by
E" in the work with C1-Cl) and an , respectively. If the

madelung potential is 0.66, then the energy in the lattice
will he I &#39;

� n + 0386 .he-=Ec-0.35:

Due, however, to the hole on the G1, which should follow the

electron around even when it goes&#39;onto the he, there should

be_a lowering of the he potential. If we suppose that this
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hole distributes itself so as to leave, on the average, a
defect of one�sixth electron on each of the six surrounding
Clis, than the decrease in.Ha potential will be .2/5.50 = 0.53.

This gives the relation 3} =&#39;E£ + 0.28 . The theory of
this type of hole is not well-founded, and it is interesting
to see what effect will be produced by a change in assumptions

regarding it. The calculations were such that the relation�-

ship E}. = E� + 0.58 , corresponding to a hole potential
of only 0.68, could easily be investigated. For the 61�

hp band, this change did not make much difference; the band

shifted by only about +c.os for this shift er +c.so in the
Na potential. The reason for this smaller shift is that

Cl atomic bands are not widened as much as the he bands of

approximately the same eigennert. Also, the energies in

question actually lie within the Cl band and outside of the

Na bands. Both of these circumstances tend to make u a

much more sensitive function of E37 than s, p or d .

Hence, a fairly large shift in the Na potential can be com-

pensated by a much smaller one in cg .

Summary

The cube�cube joining conditions are, on the whole.

unsatisfactory. They give rise to absurdly simple conditions,
or else rather complicated ones. So far as giving sensible

-results for the Cl� hp band, they are considerably inferior
to_the Clncl Joining, when compared with the double Joinig
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ccnditicns discussed in the next section. The results of

calculations for the cuhs�cube fcrmnli are shcwn an Plate 9.

They will be discussed in comparison with the ether methods

in Section XII.
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XI.

c1~c1�sa JOINING

The two types of Joining conditions discussed in

the preceding sections are not satisfactory on the basis of

their own merits. The C1-C1 case does not make sufficient

allowance for the es functions and the ea-C1 is too prolific
of zero width bases. A better method is to use both sets

of boun�ary conditions simultaneously. This leads to twenty=

four boundary conditions one, consequently, it is not feasible

�to get solutions over as wide a range in K specs as for
either of the two cases. In spite of this, however, we can

get enough solutions for this case to allow a comparison to

be made between it and the other two.

lg:

E§_ I For-}? =rG the lattice function is periodic» Since
the fagtgr Ei�"R = 1 , a worthy function will oonsist entire-
ly of even or odd parts. Since we are dealing with p func-

tions, we are interested in the odd type. There are three

equiselent C1 p functions:

(ac/1->TT , (y/r>Tf 5. (er) Tl .

These belong to a certain symmetry type as reeards_cubi¢
crystals (they form a basis for the representation 4�
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of the octahedral grenp), The next funetisns cf the same

type are

(3_�3� ¬113)/r3¢ 1: (Y5 - §¥I&#39;2)/1&#39;3 45 , (25 - gs:-2)/r5¢.

If we consider the x type cf function, we see

.eeet it takes the same value en the 110, 101, lie, and lei
faces and vanishes en the 011 and GIT C1-C1 interfaces and

on the 010 and 001 Na-C1 interfaces. Hence, we shall use

functiens around the Na which vanish ch 910 and 001. This

leads te the same type cf symmetry around both me and G1

atcms. (This result can be prcved more generally by group

thcery.)

Fer this type of eymmetry, there are only three

beundary conditions: tee across the Ha-Cl 100 face and one

acress the 110 type ef C1-C1 face. The cenditien en $5

is automatically satisfied en the latter, since

g� + Tu� = c + u n� = o .

.There are four ways cf choosing the funetiens: 3 areund Cl,
0 around He; 2 � 1; 1 - 2; 0 � 3. Of these, 3 - O -and

E? 0 u 3 can be disregarded. 1 � 2 is analegeus tn the

�$3 Clucl ease, the energy is fixed by the C1-G1 beundary con-&#39;
;?i ditien alcne and-the ma functions are merely buffers. e � 1

contains the properties which we seek, and makes the solu-
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tion depend on both atoms.

In carrying out the calculations, we shall assume

that the G1 radial functions are unity at the 81-91 midpoint�
and have derivati?e « and o . at the Ra�C1 midpoint,

their vaiaes will be u and their derivatives
0

Iarc and -«be .. "The Ha functions will be unit;-r at the Ha-G1
and on

midpoint endless derivatives s, p, d, f, stat

In carrying out the solutions, it is most convene

-ient to satisfy the C1~C1&#39;cond1tions; thus eliminating one
�constant, and than use the resultant function to satisfy the

Ea-C1 conditions. _Let the functions be

:33. AJTe&#39;(§)TT , B�5.J§(x3~=%�-1:1-2)/r3� Cb
_ E �Ha C(r) P

110 gives 
A � B = G or B = A 9

- me then gives for the conditions

* g + in = 1(g1 - iul) "and g� + in� = 1(�gi + iug)

the equations 
AoJ§ an + A4-J§ ac = - 0
ME 5:0 + AME 59¢ = Cp .
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This gives the_oondition

�e + 4&8P = -�"���""&#39; I 3
ac + 4ec _

when the right and Left sides of this equation are plotted

as functions of E: (see end of last section for e discus-
sion of E; in relation to the Eis of the� atoms), it is
found thst&#39;the r1ght_side.is very&#39;mneh more sensitive as a

function of E2" than the left. This means that a variation

in the assumption about the potential of the electron on the

He atom is even less important here than for the H3&#39;C;1jDi�o

This point corresponds to half periodicity, that is

the factor eik�R.= :1 , rather than just +1 . Since this
factor is real, we again use eea functions in both-cells.
If as use functions of the (xfr) symmetry type, the number

of boundary oon�itions and the symmetry is just the same as

for E = 000. The 110 face now gives no condition on w ,

but one on $5 instead (T110 = taH%(kx + E?) = 33)? �ance:

As � Be = 0 , B = (#f¢)A a

The conditions on-106 are the same except for a factor «1 .
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AJ§&#39;uc + i4J§&#39;(u/e)ec = +0

2 �G +   = "GP Ir

and 
5 + 4(#/e)e

P = - .

In the last paragraph, we considered the (1/r)

�type function; For the (z/r) type we ean get a solution for
all values of k in the 100 direction. The (zKr) function

satisfies the same conditions for k = 0 as the (x/r) and

was not considered separately there.

The (sXr) type has a no�al plane through the

points 100, 010, 110, etc. Hence, there will be conditions

on it for the 001, 011 and 101 faces only. This gives five

conditions 
011 one condition n = 0

101 two oon�itiona involving T191 = tan; ex = T
001 two conditions not involving T.

we must use at least three Cl functions to satisfy the Cl

conditions; tsi� gives only the possibilities 5 � 2 and

4 - 1. 5 - 2 is essentially the C1-C1 ease again, so we
are_redueed to 4 - 2.
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The functions chosen to satisfy the conditions

EYE

Cl 1%./§(z/r)n + B 5./R23 - Ezra)/P545
+ CJ§ z(x2 - ?)/r�cflb] + E :2�-zxy/1-251

i(A.KT1+ sup + CMCP) + EM:

��e G(z/r)P

The values ef the surface hermeniee en the varieus faces are

E L H N

011 1 -1 -1 e 0

_ 101 1 -1 1 1 T

001 J eJ§ _ e" 0 e� = 1

We eliminate A _frem the 011 eenditien, which is

A � B � C = 0 or A = B + C .

The eenditiene on 191 are then

�T(E) + A � B + c =

+TE + 20 = 0

ES 4- T[B(:i =-. gs). + C(:: + (9)1 = U .

On 001 we find

qt -1-r --v---&#39; ---- --nu-u---a:��-��.�._�.. -. ...
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J§[B(e% + 4%) 4- Gen] = +1[-e]
�f§[B(�}c + 4¢�c) + �e] = +1 [GP-1 v

when the determinant of the coefficients of B, C, E and G

is set up and expanded, we obtain

I wee % lax t __ s[p(xc+4<p§) + (&§+e§)] %

This formula can be checked against k = 0 when T = 0..

It has also been checked by working out independently the

�solution for 1: = we or T = on .

Since the z/r and yfr types are equivalent

for propagation in the 100 direction, the (3/r} .type

will give another band with the same solution.

Values plotted from this formula are shown in

Plate 9 for the two assumptions in regard to the He potential.

&#39; 1: = i(11:L)
__8.__._.

For this value of k , T110 = T011 = T101 = on
and Tii� = T015 = Tldf = O. The factor�

-Eei =&#39;i for the 100, 010 and 001 Ha-Cl conditions. This
shows that we can use odd functions around the Cl and even

functions ascend the He. we already know what functions to
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use around the Cl for k = 0 . We must, however, choose

_the right linear combinations for propagation in the 111

direction. These prove to he terms of three_types

rE_ (X + y + 2)

rs «&#39;3 (3 - 2) er (Y2 - 22)
b (Bx - y - s) (2x2 � ye - 22) .

The numbers correspond to the representations of the symmetry

group of the 111 axis to which they belong.

The type Fl takes on the same value on all
three of the feces about e Ne, and suggests using an s

there. The F: type vanishes on eli the 011&#39; type feces,
and is subject only to the condition or = O on the 110

feces. It setisfies two conditions on the 100 faces. Hence,

e satisfactory set of functions is

ca. 1u§���i�1*3-Tl� s5.¢@(�3+S+Z5"3 4*� 2)¢_ r s 5
P

Re C S .

The 110 face requires

Ens - 4Be = 0 or _ B N 
NE� 

£H�

The 100 face requires
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# _J53 we + e�ec - C

I �I 1J�� He + 4$¢c � -Ce

OI�

The functions er I_g tyne give one more eendi-H
tier), since they do net vanish on the 011&#39; type faces.

This requires the use of ene mere functien. For the "a"

set, which are add fer intercha�ge of y and z , we use

the functiene

cl I AJ§&#39;LI:§l11�+ 5 g&#39;J§.§§:EE:§L§££:Il£§qqD .+

The choice of the surfeee harmonies wee such that they
all transform in the same way from ene equivalent face to

E: enether in regard to prepegetien in the 111 direefien. This
.mey be seen frem the table of values.
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K L H H

011 0 0

101 -1 -1 I 0

011 1 1 -5

011 2 _2 2

101 1 &#39; 1 1

130 -1 -1 Q1

100 0 0 0 0

010 &#39; J5 -4J5 0 1

001 -JE 4J§ 0 I _-1

It in soon that fitting at 011, 101 and 010 will onnoo
all the other faces to fit also.

The condition on 101 is u = 0 .

i+B+C�--=0 .

Gm 011, it is u! = 0

in + Bo - 360 = 0 .

Therefore

B�-&#39;-%(£+5) 1 C=%( - 1 ,¢ ) E. 
W

_ This gives for the condition on 010
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The values obtained far 1: = -3-3&#39;-(111) are Shawn on Plate 9.
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XII.

suamaar as THE wear as THE 0;� as sass

aaaaaas ABOUT rozgg sagas;

Caleulatiens have been carried out for the C1�

Sp band on the basis of three different sets of boundary

conditions: C1-Cl, Ha�C1, and Cl�Cl~�a. The energy versus

k curves for these are shown on Plate 3. We see from these

that the C1-Cl is a much better approximation to the Cl-Cl-Ha
_ than is the Ha-Cl; goweverg the Ha-Cl energy values cover

roughly the same range as_the other two.

This result is not as trivial as might appear at

first glance. For the Ra-G1 gaining, the Cl fanotiens are

evaluated at the Ha-Cl radius rather than the C1-Cl radius.

at this&#39;radiua the Cl" 3p band (defined as the_energy values

for which so/so ( O} is about three times as wide as for
tne Cl�C1 radius. we can see, roughly, that the Eaucl band

edges, which come at -;c/no = s, p. and d of the He functions,
will lie in the central part of the range. This is a can-

sequeaee of the fact that tee a, p, and d values are of the
order of +1. The values of so/ac range from 0 to .e3
with #1 near the middle of the range. However, it is _
gratifying and, on the whole, somewhat surprising that the

as-C1 bane actually lies within the Cl-C1�Ha band.

So far as the detailed structure is eonoerned, there

is no great resemblance between the Ha�Cl and the other tee.
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For this reason, it appears doubtful if a great amount of

faith can be placed in the structure of any of the bands.

On the other hand, the marked similarity between the Cl_G1

and C1-C1-Ha bands indicates that they may be fairly good...

It would not be wire, however, to assert a definite opinion
on this point.

The_overlapping of the energy ranges on the three

schemes does have a definite interpretation. We should cer-
tainly expect that an exact solution of the one electron
Schrddinger equation in the field used would give an energy

band in very nearly the same place.

one thing we should expect to depend upon the C1�

Sp band is the binding energy of the lattice. In the case

of a monevalent metal, the heat of formation and the con-
pressibility&#39;are dependent open the behavior of the band for

the valence electron. as tne lattice is squeezed together,

the band widens. At first it spreads equally to both sides

of.the free atom energy level. Since the band is only half

filled, the electrons go into the lower half and the total

energy decreases. when the spacing is made too close, even

the bottom of the band starts to rise and the energy increases.

&#39; The minimum-in the energy versus lattice constant curve gives

the equilihrinn spacing and the binding energy. Tee curvature
at the minimum gives the compressibility.

lee situation is quite different for the valence

electrons of the Cl&#39;_ion. These form a filled band, and for
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large lattice spacing, the spreading of the bane does ngt
affect their mean energy. Thus, to begin with the entire

change in energy is due to the Hadelnne energy. This causes
the total energy to decrease as -1/5 . when the lattice

is squeezed very close together, the band begins as widen
more at the top than at the bottom and repulsive forces set

-in and hold the ions apart. A rough ices of the total

energy can be obtained by taking the average of the top and
bottom of the hand as the average energy of the hand. If

this_is multiplied by sin. for the six electrons, and added

to the Medelung energy, the resultant total energy per

molecule has a shallow minimum eithin 2% of the observed lat-

tice spacing. However, the corresponding binding energy is

negative. That is, our calculations indicate that the lat-

tice_is unstable.
It is not difficult to find the reason for this at-

surd result. In section IV, the calculation of the potential

for the Cl ions was discussed. t seemed reasonable to re-

normalise Hartreeis potentials so_as to include all the

electrons in a certain amount of space about a Cl nucleus.

�This change in normalization gn:{�:f�icientl;5r affected the fiel

as to cause an appreciable difference between Hartreeis

energy parameters and ours. In fact, the center of our band

is about 0.15 at.U. higher than Hartreels level. Since the

madelnng energy per molecule is only �.E6 at.U., the excess

energy at the minimum is 8 x 9.15 - 0.66 = 0.24. In regard
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to this difficulty, Nacl is very different from the alkali
metals. For them the potential on an electren is nearly H.
independent cf the lattice spacing and calculation of wave

functions for one fiel� is all that is necessary. For the
01 ions this is far from true. As the lattice is squeezed

together, the change in the charge distributien affects the

�field of the valence electrons quite appreciably." Eence,
fer various radii it is necessary to carry out selfwccnsistent

fiele calculaticns for the wave fnnctions.* If the total

energy is then plotted as a function of 5_ , the minimum

should indicate the lattice spacing and binding energy.
Even if the above process is carried out, we cannot

expect as good results as for the alkali metals. Fer the

outer electrons cf the Cl" ion. the Hartree approximation I

is not nearly as good as for the outer electrons cf sadism.
(Fer sodium, a field can be chcsen which gives good agreement
with the spectral terms.) Hence, there will be a consiaerable

error in calculating the zero of energy for infinitely sen»

arated ions. If this zero error varies as the lattice is s

�squeezed together, it may well so mask the repulsive effect

cf the band widening as to obfuscate the results.-

-u-�--.. -r -n .-4-v--I-�--H--I-.---.u-.-n--u-1:.-_-. -r.u.n..1u-.q-.:q-.-.:-�u-n.-u-nI-u.--u_v1-

� Self-consistent field calculations for LiF have been
carried out by Ewing and Seitz. Abstract in Phys. Rev. as,
639 (1956). an article by them is expected in the near future.
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XIII;

CGNCEBHING EICIT TIGH

The next question is what to do with them when we get them.
Since the bands in Ha�l are filled, we cannot use then fer
the calculatien of a ncn�existent cendnctivity.

However, they can be use� te calculate the energy
of electronic excitation in the lattice, and this sheul� be

very closely related to phencmena ccnnected with&#39;dispereienr
and ahscrpticn cf light.

lFcr a free etcm we ccnsider&#39;the light as producing
a prebability of finding the stem in an excited state. This

probability and, hence, the interacticn of the light an�
the atom depends en the frequency cf the_light, a situation
which results in the Kramers Heisenberg fermula fer the phen»
emenen cf d1spersien.* when the frequency cf the light is
very nearly ene cf the natural frequencies of the stem, this
prcbability of excitation beecmes very large. �There is then
a large amount cf light scattered by the atem and ccnsidera

�able probability cf transfer of energy tc colliding etcns
in the case of a gas or to lattice vibrations for a solid.

*3:�a:";1;;;;";;a*;:&#39;;:&#39;;~;;;;&#39;zegggggggggg�e"T&#39;c&#39;;;;;;;;1�
Physics," page 549.
G. Wentzel, Handbuch der Physik XXIV, ?79.

I |�Ill-I-�-�.n.._�-1.
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By analogy with the case of the free atone, we are

led to investigate the probability of excitation of the crystal

by light waves. The interaction between a light were whose

vector potential is- i(x) and an electron is

2
e =-3- p-A+-9=-«A2 "&#39;
l -no BEER

For a plane were, �A is of the form f eisar , where "f

is-a polarization vector. The perturbation H1 is capable

of causing transitions of the electron from one lattice fence
_tion to another. There is a selection rule for these transiw

tione, If the lattice functions are

:1}! «B &#39;$&#39;==,éE e � tu an�
I�

qr" = Z eiah�d wry;-_ , then
� _~

-3; i;*I = f S

For visible and nltrariolet light, E will be much smaller
than H .. R is of the order of 1/ S , the reciprocal
vector for the lattice, while k is of the order of. 1/l ,

the navelength&#39;of the light. Hence, this selection rule is
practically equivalent to

H=H&#39;

and the latter will he used for calculating energy differences

;Eo;�a�tE;ronEhéciscnssion of the interaction of electrons
and radiation, see G. Breit, Rev. Hod,_Phys. g, 504 (1932).
See also, E. Fermi, Rev. Mod. Phys. g, 8? (1952).

|y �---- -- - -��n._-...j_._e.-.- .- -&#39;_�  --�---------�:--.�1p.g- -I 1- I . -. - - - . -1_.-.-.-.-��.��--��.�- -
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between the lattice functions.

The interaction of the light with the crystal can

&#39; then be thought of as the sum of the interactions with each

of the electrons. We suppose that in the lowest state there

is one electron in each of the lattice fnnctions for the

filled bands. Under the influence of the light a given elec-
tron has a probability of Jumping to vacant states in higher
hands. Due to this probability, there will he a current in

&#39; the lattice. The value of this current and its influence on

the light can be calculated and interpreted in terms of an

_index of refraction. This method has been carried out by
Wilson.� There is an important objection to his method. He

does not s�ecifically consider the interaction between the

electrons. In considering any one electron, he replaces all

the other electrons and the ions by a periodic potential

field. This field is taken to be the same for all the electrons

and his one electron wave functions are solutions of Schr5dinger*e

eqoation for this potential; The energy required to excite

an electron is taken to be the difference in energy values

for the solutions of Schredingerls equation.
This method of treatment is obviously rather crude.

In Section II, we saw that the potential in which an electron

moves is not independent of the energy of the electron.

This change is due to the difference in interaction between

o5FE?"1EZI;S£:�§I~3Ef"ES§f"53E."mi, .2-74 (1935) . c
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the electrons, and we must take into account its effect on

the total energy in determining the excitation energy of

a single electron. _

If we treat the crystal by the Foch method, using

lattice functions, we must consider what is meant by an ex-

cited state.

The most natural interpretation of excitation will &#39;

consist of replacing one of the lowest one electron lattice

functions by the wave function for an excited state. we

have shown in the last part of Section II that the energy
difference between the two determinantal functions is just

the difference in the energy parameters of the Fock equations

for the two lattice functions. In dealing with the Foch

equations, we have replaced them by Schr�dinger equations,

and in this the treatment is similar to Wilsonis. However,

we have found it logical to use a different potential func-

tion in the Schrodinger equation, depending on the energy-of

the lattice function in question. This difference is Just

such as to make the energy parameters include the effect of

the varying exchange energy of different energy lattice func-

tions. The writer, independently of Wilsonis work, devele
. oped a theory of dispersion, using determinants, rather-than

treating the electrons individually and taking the energy

differences as those given by the Foch scheme.� The formula

��:�§ES§£i;y: ;hys..Rer. A49, 639 (1936).
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for index of refraction was the same as that obtained by

�Wilson, save that the wave functions and values of s

have a different interpretation.

On both Wilsonis theory and the writeris, absorp»

tion of light by the crystal would he expected when the fre-
quency of the light corresponds to that of a transition

from an occupied to an unoccupied band. The difference in

interpretation of the transition energy has been discussed

above.

In order to calculate the dispersion properties,

it is necessary to know the wave functions for the excited

states. It is impractical to carry out calculations, such
as those for the C1� Sp band, for enough higher bands to

evaluate the expressions for index of refraction. However,"

the ultraviolet absorption should depend upon the energy

difference between the highest occupied and lowest unoccupied

bands.

_It is therefore worth while to attempt to calculate

the first excited band.-

g;�g1 Joining

The C1-C1 joining approximation is evidently cruder

for the excited electrons than for the filled levels.� The

. excited functions will certainly be less restricted to the

Cl&#39;s and the sets will play a correspondingly more imssrtant
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role. Hevertheleee, there are severel peints of interest

in this methed.

In the first place, we are interested in etetes

in the two bands having the same value er the quantity

;f(= Eek/e as defined in section e). an the C1-C1 epprexu

imatien, the highest value in the C1" 39 bend eemee at

e = no and k = O . The next highest eelutien is fer

IS = G and k = G . The difference between the energies
. should then g§ve us the ultraviolet ebeerptien frequenev.

The ultraviolet ebeerptien e�ge is at l72GEw* This cgprggpgndg
�ta a�_energy difference ef 0.54 At.E. If we use the same

potential field fer the p and d funetiene, we find the

energy difference between bends te be 0.50 At,U. If we use

e potential which does not have the hele, the value is ebeut

1.3 At.U. By assuming a proper frectien of-the 5p nele to

be left after the electren has jumped to a higher bend, it

weulg be possible to ebtein any band separation between

about one-half and twice the ultrevielet ebeerptien eege.

Ha-C1 Jeining

Oh this eppreximetien, we can ellee the sodium

eteme to play an important part, and this permits us to

use eeme physical reasoning in connection with what sheuld

"be the first excited bend.

ih£;£3eiE:§Ernstein, Hell, ele.
Eendbuch d. Exp. Phys. XIX, 155.

" -�-�I-�Il: -H -- -- - - .p_-_e.�.-_._.__:j, ". , ., H._,_ I,
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"W9 ma? consider the ionic lattice as being formed
in the following way out of ions, arrange the ions in the
Nacl lattice, but at infinite lattice constant and tnen

rs

shrink the lattice together. at infinite separation the
ions are not affected by each other, and in�iri�nal ion sate
functions may be used. The first excited state for these
conditinns will be formed by renewing an electron from one

�of the Cl: ions and putting it on one of the �a+ ions. is
the lattice is squeezed together, the electrons on the Cl"

ions find themselves sore closely snrroun�ed by the positive

liens and, hence, their energy bani drops lower on the energy
scale, the amount being obtained from the lattice potentials.

�Finally, when the atone get very close together, the band
niéens and its average energy begins to increase. This in»
trodnoas a repulsive force and holds the lattice apart at
the equilibrium spacing. On the other hand, the eleotron in"

excites level finds itself more closely snrroonoed by negn

ative ions and its potential rises. Due to the greater area

tial extension of the wave functions, the encited letel begins
to widen at a larger spacing than the filled levels, and its

lower edge tends to drop.* Qnr problem is to see if there
is an analogue to this behavior in the Ea-Ci joining case.

-l"&#39;-El"----I-�:;--n1:_...Jh.-L51--.n.-nu--�u-&#39;\:..|.-1.1--I�-L-tau:-.pp�-T.
Tne above picture of the band situation is due to J. C. Slater,

and any flaws in its presentation here are the nriteris.
Dr. Slater carries the treatment much farther and works out
a theory of the H.V. absorntion e�ge from it.

$41: vv-w~-I-u-I-.&#39;.--I;I-an-I-Inna-unau--.u-.-�--p-;p�-> :�-u-.-r:|-...u.........�-u_-:L- an n: 4-.-1:-1 pa-=3 .�.;..-u._an-.--g:





as was pointed cut in Section X, page 96 3 the

�a�Cl éoining treatment gives the correct Eande when the atoms
are far apart. It will thus give the correct band for the

excited state at infinite separation. .The k = 0 condition

for this band will be giten by «e = 0&#39; (the notatien

is that of Sectien X), and the limits in the 111 directidn
by -e = 1: . For very large separetien. s , 0&#39; and

e are continuous functions of the energy and approximately

equal to + J???� where this is real. except when E;
is near an eigenvalue and there they are discontinuous.

For the filled. hand 0&#39; is computed with a hole

on the Cl� ion, whereas fer the unfilled band it is cemented

eitheut a hole. This causes the ¢&#39; discontinuity te eccur

at higher �E; fer the unfilled band. This situation is in-

diceted in the adjacent figure. As the lattice spacing is

decreased, the enly effect at first la that of the madelung

petential. as the actual lattice spacing is apprueched,

the hands begin to widen and finally become very wide at the

actual spacing. The energy difference between the filled

levels and the unfilled one is then abeut 1.5 At.E. or,

rcughly, three times the observed value. If are use the 0&#39;

for the filled bend (goint e of the figure). however.

�the difference is about 0.?5 At.U., which is the closest te_

-observed�value of 0.54 of any ef the trials thus far.

The s = -a edges appear to come generally some-

what higher.



C1-c1�aa Jo1n;ng_

We shall work out only the k = 0 ease for this.
For this the lattice function should be even about both

atoms and, since it is e�1ike around the Ha, it should C��!

siat only of spherical harmonies cf full cubic aymmetry.

Then the 110 type face gives one condition, g� = 0&#39;. The

10¢ face gives two conditions. By reasoning similar to that
_ of Section XI, ee oonolude that we should use two 01 functions

an� one Re. The oon�ition of eymetry requires these to be

Cl A Z 3. a(x4+y�*+zf"* � g-«r4)jr4 [-

Ea CS

The 118 condition is

At!" ._-%§-ey =.o or e=1o(0&#39;/3-)A.

The_10O conditions are then

�" or (re
=eaac+-4333 �r S:-g%+4-E,-Ugo

. w*- _a.�A G&#39;c+4-.?&#39;(c =-CS .. a:::"&#39;4�x¥�

The g functions which are needed for evaluating }( ha?e&#39;

not been computed. However, for a large part of the inteé

gration the value or £(.2+ 1)/3-2 = BC}/1&#39;2 is the doeinent
term. Hence, a fair eeproximation to-the g functions ean
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be obtained from the solution of the wave equation in free

SPEGEI J4(-J&#39;�"§¢" r) , where j4(x) = J2::?x J? (K) .. A *

The value of the energy gap between bands, based

on the Bessel functions and O� values for a potential witne
out e hole, is about 1:1 Ati�g Calculations were not made
with the potential with the hole, but the value can be estima-

ted as about 0.0 to 0.1 £t.E. (The shift in wave functions

due to the hole is about 1.1 At.U.} Thus, we are again at
a situation where the desired value can be obtained by a

suitable estimate of the effective hole.

Qogolgding Egmaggg

There are two questions which are raised by the

above work:. how genuine is the variation of the hole which

we find from the Fook approximation, and how good are any of

our joining con�itions? Certainly, from the point of view

of the Foot approximation, the hole must behave in much the

way outlined in Section II. Physically, also, we should ex-

pect a decrease in the hole for an excited electron. The

excited electron will be moving more rapi�ly through the lat»

tice and the other electrons will not have a chance to move.

i*§:"a:"iE§Eé:�;�EEnocs of Theoretical Physics} M.I.T., first
edition, pages 137 and 188. -
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out of its way as much as for a slower electron. On the

other hand, perhaps the picture of 1attiee_funct1ens is

not as good as the older picture of atomic excitation. 0n

the basis of that picture, individual atoms are considered

as the units and excitation corresponds to a change in the
energy level of the atom. The other atoms perturb the lerels

and afford a means of transforming excitation energy into
lattice vibrations. Fer this case, there will be a hole,

as there always is in the ease of definite number ef electrons

eround&#39;an atom, regardless of the state of excitation ef the

�atom. There does not seem to be any satisfactory answer to
the first question at present.

Regarding the second question, which concerns the

boundary conditions, it is possible to obtain some further

information by the considerations of the next section.
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XIV,

TEST OF THE SLATER CONDITIUHS FOB FREE-CENTERED

AED BOD;-CENTERED LQETICES

There is one case where it should be legitimate to

use the Slater boundary cenditians fer which the exact lat-

tice functions are known. This is the trivial case cf can-

stant potential. For this case, Schr�dinger&#39;s equatian reduces

ta the wave aquatien in free space

2Hr = - Q? w = aw .

The lattice function selutiens ef this equatien are

where the wave vector V satisfies

1.-&#39;2:-"E .

If spherical ceerdinates are used, the selutiens are

xv = snm(e,¢~)an(wr) . "&#39;

�Here -_

311(3) = *1�; 23 &#39;3-n+1�/3(3) Jr

m2 = a

ana S is an nth erder surface harmonic.
---nil�---15*�-*:-���: 1"�-"3|"1I&#39;�&#39;I|1&#39; H-11-5-&#39;19?�-i�-I�|}FZ|i|.&#39;X|I-I-jrUP2u-H1--u�ljh�b�iilr--jll��-���Cl III"--u-II&#39;|-|tI||"&#39;VII HFLI--I-4-XITI

*P. H1 auras, vastness of Theoretical Physics," a.I.r.,
first editian, pages 18? and 188.
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Hence, for our potential, V = 0 , ea know both

&#39; the correct lattice functions and the spherical functions.

We should then put in a fictitious lattice, of unit lattice

spacing; and solve the Slater boundary conditions. The re-

sults will then be compared with the correct plane eaves.

Ease-Cgntered Lattice

Let the unit vectors for the lattice be

= ii = l =3-.3.$1 0 2 2 * as �E 0 2 * as 2 e 0 &#39;

The reciprocal vectors are

bl = T 1 1 , s = 1 1 1 , b = 1 1 T� ,

In terms of k , the were vector v will be

r = 23k .

Then, if R is a point in the reciprocal lattice,-the wave

function is periodic. The radius H110 , at which the func-

tions should be evaluated and which occurs in ten vo�ll�-,

is

r ...;;. g�-3110 &#39; 4 4 0 * �R1101 � 4 � d

and 
_ _ �E -. "   " V �-   +  -Ir

For energy s = mg , the rslues of G� , s , etc. are



Since the expressions we obtain are always of zero dimensions

in the quantities 0&#39; , it , etc., the common factor cc will

cancel out. Renee, in all calculations GV%n.nXm , etc.

are used in place of G� , s: , etc.

All that was needed to make calculations from the

Slater conditions were tables of j;(n)/3n(n)_ for n = O to
5.* The value of the energy is than

_E = m2 = (nfd)3 = Baa .

F c - t d 111

There are five bands for the face-centered 111

direction. {See list of Solutions.) For this direction

E = n, n, n, and the energy of the correct lattice functions

is_&#39; e = V3 = asgsug = lzngug . There is only one type of
tangent factor, T110 = M = tan an .

For a given value of n , the values of the 111 line

formulae were worked out and the values of 1: found. From

these, the curves shown on Plate 10 were constructed. Gal-

culations were carried out in detail for energies below

100 At.U. For higher energies, several roots for E = 0

5&1}???-iE;I~&#39;"E;&#39;§§-233;�i;E2£EEE&#39;E3"§i&#39;-SE3;£23;-&#39;i5f"i:T:iS§E&#39;é:";£a 
kindly furnished him with tables of -3n(p) and Jn(e).
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are shown.

The k = 0 roots are very interesting for com-

parison with the exact solution. For the exact solution, the
lowest energy periodic lattice function (i.e., one which takes
the same value in every cell) is obtained by letting v = 0 .

The function is then a constant. The_next highest energy for

which we get periodic functions is given by v = Est .

There are eight functions for this energy. They are obtained

from the eight possible values of he of the form

_ + +no � - 1 -1 i 1 .

The energy is

v2 = cxzk� = 12x2 = 11s At.U.
For slightly different moments, the degeneracy of these 8

periodic functions is removed. If we consider them as fnnc~

tions of k , which are periodic in space for k = G , then

for values of K in the 111 direction they will be given
b .
&#39;3 2si(i1+n, i1+u, i1+u)&#39;T

V = B -

These functions split into 4 sets for u # O . They can be

classified according to_the values of v2 which determine
their energies.
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r2 = 4x2 3(l + u)2 &#39; 1 function
2V = 4-=-&#39;2[2(l + I02 + (-1 + 1:02] s fnnctiens
2. rV = �lira [ (1 + u)2 + 3(--l + u)�&#39;] :5 functions

V2 = see .5(-1 + u)2 _ 1 functien

For points in the first sene<�&#39;k,space, n runs from - 1/2
to + 1/2 . iThe energy conteurs computed from the above

values are also sheen in Plate 10. (Dotted.lines.) The last
.type is emitted, since it is merely a dnplication&#39;ef the
values already shown between u = 1/2 and 1 .

We see that for ks� , the eightfold degeneracy

at E = 118 is represented by a fivefold degeneracy at 89

with. 5 = D , and a threefold degeneracy at 163 for s = en.

Thus the average error in the Slater method for the first exs
cited set of eeriodic functions is about 25%. So far as den
tailed cerrelation is concerned, there is almost nonee It

is possible to decide to some extent which functions cf ens
set should so with those of the other an the basis of symmetry
preperties, but nothing is gained by this. I

When we consider the simplicity of the apprexima�

ticn, it is not surprising that the agreement is as bad as

it is. The first excited set of periedic functions in the

exact solutien is eightfeld degenerate. In the method of mid-

point fitting, only 12 functions were used in all. This is



. &#39;- ::_-:-.1.
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an average of 1.5 spherical harmonics for each of the eight
plane waves. It is evident that we should not expect our
approximation to work too well.

For It 4 0.4 in the lowest band, the agreement
is really remarkably good, the difference between the two

curves being less than 1% for both the 100 and 111 lines in

the face�centered lattice.

It may also be noted that the spurious energy gaps

at the edge of the central zone (u 2 0.5) are roughly the

same as those found by Slater for metallic sodium� when the

difference in lattice constant is allowed for. The inplicau

tion of this is that the energy gap at the edge of the zone

is narrower than he supposed, and that the laws of Eraga
reflection for diffracted electrons should be more exactly
fulfilled.

Comparison with the Ngwgl Eroblgg

It is interesting to see roughly what part of the

graphs of Plate 10 correspond to the C1� sp band. we might

expect that on the scale of these drawings the 5p band would

be so narrow as to be cosidered more Bloch-like than plane

wava�11re.&#39; as a matter of fact, however, the sp band takes

almost precisely the same energy range as the central zone. -

_$3:&#39;E:_§i;E;;:&#39;P£ys. Rev. gs, see (1934).
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The lattice spacing of Nacl is 10.6 At.�. The lattice spacing

for this eeeticn was 1 unit and the energy range of the

lowest zone was 30 units. If we enlarge the lattice spacing

to 10 units, this difference will decrease tc&#39;0aE units.

(The energy of the plane waves is &#39;erepcrtiena1 to the square

e� the reciprecal Vector.) The C1 Sp band has a eidth ef
0e55 units»

Having seen hem poor the ccrreependenee is outside

the first zcne, we cannot expect to get a check of much bet-

ter than abeut 25% for the band to band treneiticn 1n.EaC1.

Eag§�C§3§e;ed 100

an Plate l0,_the results of similar ccmputatiene

fer the 100 line ef the face-centered lattice are sheen.
These are not given in as much detail as these cf the 111

line. The method of calculaticn.and the results are general-

ly similar to those of 111.

Bedg�Cen§e§ed Latyice

Similar calculations have been carried cut for the

bcdy�centere& lattice. Using the same netatien as far the

face-centered lattice, the various quantities were
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a�k�

b1=U11 , b2=1-O1 , 1.: =11o

V 3 Bsk

�itfhe -k lattice has the his for unit vectnors.

W111� *-. �(%&#39;%:%4&#39;)l "&#39; °%%"&#39; as
 _ slil = tan at/2(1cx + 1:? -1» 1:3)

� .&#39;!a(_md);&#39; __ 3000 _&#39; �� WW &#39; �� 33779"

The energy far a given value of is

5"�  &#39;

Using this notation, the lines 110 and 100 were worked sat

for the bady�centsred lattice. The equatians far the lines
¢ _were taken from Slateris paper. The curves are shawn an

Plate 11¢

Cone udin m rk

between nearest neighbcrs gives a gasd approximation to the

"E?�5T&#39;§§.;E;;I�§££;&#39;I�§;;&#39;I&#39;;E.I�-E§5�;£5&#39;¥§§&#39;Ei§%;3T """

It is fauna that the method sf fitting midpsints_.
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exact plane wave solution inside the central zone. Outside

of this, it is very unreliable. For X-ray levels and very

narrow hands in general, it will give solutions qualitative-

ly similar to the Bloch scheme. For higher energies, where

the metallic correspondence is reached, its validity may

be little better than it is for plane waves. For these cases,

it would be desirable to have an approximation in which we

could place more faith. There are two ways of improving the

approximation. Either more points oan be fitted -~ this

is feasable for the body�oentered lattice,but not convenient

for the faoe�centered lattice «� or tangential derivatives

at the midooints of the faces can he made continuous. It

would be interesting to test such improvements by the method __

of this section, and the writer has been prevented from doing

so only by the discrepancy between the Earthls rate of motion

about the sun and the writer&#39;s rate of doing work.
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LIST OF S¢LUTIOHS FOR THE FACE-CENTERED LATTICE

__. » Even or Sheets of 5;v& Name 01 solution and pa_e F
:g _ Odd in b"nd connectedTE reference or formula planes�. wgth this

001 011 sclution

1

&#39; ig &#39; 0010 page 52 0 - I and II
Gila page 59 _ � 0 1: and III

l��a tanz�gu) = �

10013 .tan2(*�-&#39;11} = � 5 0 0
3 -¢ .

100:; . S = 0 % � 0 E

190d E U

£+? II and III
1003 _ 0 E

110 line R = uu�

Let K = tanxu, H&#39;= tan(uu/2)

ll�a K2M2::q:(5$+d�) + I£2S(u+q:){t+5¢)

+ 4KH S(@=x)(¢-S) I E I E i and If

+ 2M28(:::-I-::p)(2S+U) + 128% = 0

1101: .32:-3 -&#39;0 E land II

110:: 312:--�� E 9 III
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S3: 
51:.

&#39;. _ .-,-r;

110d H2 -u 
+Ha� 

c: 
E!

111 liné, k = unu

i� 9 _ 2V59, 1�� �H (#11) --= *&#39; IE3? &#39; E I

lllb _ &#39; E
.2 .

tan (�n) = =_;%%* = II and III
1113 QN-{I :

111a % % 7 % E

llle &#39; Q

lllf 9 3 an I - Q
1 .-.I�:-

ine k = u 0 + 1

:3 Ia page 56 E - III
E� lb - page 5? E -
$_ I and II

§§ _ Ia page 57 0 _
Id page 58 , S u 

3 
C} 

I

Line_II, k = u(lDO) + %(o11)

xxa page 63 - E I and II

Ilb pagé 65 &#39; - 0 111
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L;gg I11, k = [v=1}[1Qg) + 1(g;;)

IIIa page as I &#39; - E I an� II

IIIb _ . page 66 - 0 III

III-1: page 6�? S = on - 0

Line IV, a = u(o1E) + %(111)
Iva . pagé 71 - �
Iifh page 6&#39;? (diacussican of Iifb) - �

I&#39;.:-&#39;-
-I&#39; &#39;-.-" ..

-&#39;--&#39;.-&#39;-  -&#39; &#39;-&#39;1-.."&#39; .
 i.&#39;.&#39;- &#39;.&#39;.i&#39;..--�&#39;  .&#39; .
 ..-

. ..
&#39; &#39;.- .:
 ..  
  -   .- -

- =  
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.. . __
 ,  x
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.. _., ,_.__5._~,~,.,. __
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H: ___a?_.:._
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The purpose of this thesis has been to extend the
methods of calculation of wave functions in solids and to

investigate the applications_of these wave functions. The

point of view has been that of the modified Hartree�Fock

scheme of calculating wave functions developed by Wigner
iiand Seitz,* together with the Slater _method of calculating

excited states. 
In particular, detailed computations have been made

for the highest filled band in crystalline sodium cnloride�
(rock salt), which originates from the completed Sp shell of

the Ci" ion. In the process of this work, new methods were re»
quired in order to treat the type of boundary conditions arising

for the case of two different kinds-of atoms. Three different

appronimations, which may be characterized by the Joining con»
ditions, have been investigated. The most exact of these in-

volves satisfying the Slater houndary_conditions {continuity

of  , and the component of �V?� along the interatomic
line) at�tne midpoint of both the 113 type inter-chlorine line
and the 10% type chlorine-sodium line. The approximation ob-

tained by using the Cl-ma paints alone differs markedly from

this in its energy contours and is unsatisfactory for various

E. Wigner and F. Seitz. Phys. Rev. gs, 509 (1954).
**J. c. Slater, Phys. Rev. gs, v94 (1954).



ether reasens. anether ppreximatica is ebtaiaed by negleet=

ing the Ha�C1 peints and using the Clw�l seiats alene. Al»

theegh this fermulatiee eeuld eetieeslg be inadequate fer the

hands arising free Ea levels, its results are quite clese te

these ef the meet eemplete methed eases that mathgd has been

eeeked eat. It else has the advantage ct leading te the faeen
centered lattice cenditiees which have aiseaeg been investigated

by Krutteri*
In the eeuese ef iavestigatieg the facemceeteee� lat=

tice, several new metheds er increasing eee infermatien cen-

eeeeing the energy centeurs have tees deseieped. It has been
feun� pessible te make calce1atiens&#39;fce seal} values cf the
wave vecter, E, for cases in which it �s impractical te carry
cut the details cf the Slater methed fee iarger values cf k .
Several new redactieas cf the general Sister determinant have
been found which alias the energy ceeteess te be drawn threuga�
eat space with a geed deal mere ceafieeeee than befere.

It is pessible te test the aeeeeacy cf the Slater
ice ehieh the eerrectmethee by applying it tc the cue case

sclutien is actually knees: that ef the case cf zere peten=
This test has been

carried eut fer the impertant directicas is eedy and face=
centered lattices. Fer momenta within the first Brilleuin
sene, the agreement is exeelleeti Fee tee ester Z��e�s it is
quite unsatisfactery and indicates aefiaitaly that sees ether�

-_--.-us.-1:.-4.-.;�._.--_1-9.4-a.-q.-n.--I-::|:n--..-.An-.-:�u�a::...n.r-u._..���-�.;.-=|-

- --� --� I --n u:�e._.. ____,.._,_,_,_ _ �



-HHJEI-I

-".1;  : I
.. I

methad must be employed there t-3 obtain accurate results.


