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INTRODUCTION

The purpose of this thesis has been to extend the

| methods of calculation of wave functions in solids and to
investigate the applications of these wave functions. The
point of view has been that of the modified Hartree-Fock
scheme of calculating wave functions developed by Wigner
and Seitz,* togetner with the Slater® method of calculating
exclited states,

. In particular, detalled computations have been made
for the highest filled band in erystalline sodium chleoride
(rock salt), which originates from the completed $p shell of
the C1™ ion. In the process of this work new methods were re-
guired in order to treat the type.of.boundary conditiaﬁs arlsing
for the case.ef two different kinds of atoms. Three diffgrent
approximations, which may be characterized by the Joining con-
ditions, have been investigated. The most exact of these Iin-
volves sétisfying the Slater boundary conditions (econtinuity
of Y , and the component of W Y elong the interatomic
‘line) at the midpoint of both the 110 type inter-chlorine line
and the 100 type chlorine-sodium line. The approximation ob-
tained by using the Cl-Na points alone_differs markedly from
thié in its energy contours and is unsatisfactory for various

*E. Wigner snd F. Seitz, Phys. Rev. 48, 509 (1934).
J. C. Slater, Phys. Rev. 45, 794 (1934).
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other reasons. Another approximation 1s obtained by neglect-
ing the Ha-Cl points and using the Cl-Cl points alone. Al~
though this formulation would obviously be inadequate for the

‘bands arising from Na levels, 1ts results are quite close to

those of the most'compléte method where that method has been
worked out. It also has the advanfage of leading to the face-
centered lattlice conditions which have already been investigated
by Krutter.” | |

In the course of Investigating the face-centered lat-

tice, several new methods of inereasing the information con-

.cerning the energy contours have been developed. It has been

found possible to make calculations for small values of the
wave vector, k, for cases in which it is impractical to carry
out the details of.the Slater method for larger values of k.
Several new reductions of the general Slater determinant have
been found which allow the energy contours to be drawn through-
out space with a good deal more confidence than before.

_ It 1s possible to test the adequacy of the Slater
method by applylng it to the one case for which the correct
solution 1s actually known: .that of the case of zero poten-
tial which gives rise to plane wavés. This test has been
éarried out for the impertant directions In body and face-
centered lattices. For momenta within the first Brillouin
zone the agreement is excellent. For the outer zones 1t is

guite unsatisfactory and indicates definitely that some other

*5. M. Kratter, Phys. Rev. 48, 664 (1935).
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method mist be employed there to obtain accurate results.




11,
THE FOCK EQUATIONS AND THE HARTREE APPROXTMATION

If we are willing to neglect the motion of the nuclei,
as in the method of the "clamped® molecule, the Hamiltonlan

for the electrons is

(2.1) Z ;_(n)zvz + V(xj) + 7 Z

j< K r“

Here J 1is the index of the electrons a.nd.runs from 1 to
n , the total nuuwber of electrons. Xy is the coordinate of
electron j , and Vj is the gradient in these coordinates.
V(xj) is the potential energy of an electron at xy in the
field of the nuclei. Although thls potential 1s infinite for
-ap infinite crystal, the potentlal on any electron is rendered
finite by the presence of the interaction term ZZ eg/rij .
The Fock method consists of setting up a determinen-

tal wave function of the form

,5 L _' 1‘1(11, g 1) * et ‘Fl(rhx g )

I N DTS
(£.2) X =
Jat Vn(xl’ gl) et *n(xn’ 5 ) .

The g are sPin coordinates and the one electron wave functions
¥y (x, ¢ )= ¥ (x) Sm‘f are assumed to satisfy the

eguations

(2.3) zs'in (x5 ¢) wk(x, ¢)ax = Oy




This orthonormal condition introduces no lack of
generality. If we attempt to minimize the mean value of B

(2{'4) g =Z..£f..-s-i'?ﬁxdxl '*-dxn ’_‘

g": ] .
we find that the funct;ons ¥ must satisfy the well;knawn
Fock equations.” | o
' If atomic units are used, these equations may be

written in the form
(2.5) [—sz *V(x o+ B(x-)] v (x &) +J5 [—Aki(x) ~ Ay qu(::;')'= 0.
: ’ . k

. . \" 2
Rere B(x) =2 Z Sl (x ")2 dx!
. = f' l k '5 |rixx )
is the_electrostétie pbtential-of the electron distribution
represented by X .. V + B is then the electrostatic potential

of a neutral lattice of‘plus point charges imbedded in the
negative charge distribution of electroms.

é; | The, Aki are the exchange terms:
(2.6) 4, () = 5: Tell DUNCTN DETC R

;; ' In order to understand the effect of the exchange
ié terms, we shall assume that the V¥, are functions of the
i

1 ¥The notation and treatment of the_Fockfequations given here
i is taken in an abbreviated form from Frenkel "Wave Mechanics
i . Advanced General Theory", pages 428 to 431.




. Bloch type. Let us suppose that we have a parallelepiped of
materisl whose edges are parallel to a2 set of three fundamen-
tal lattice tramslations a;, a5, 83 « Let there be n,
atoms along the first edge, etc., so that the total number

of atoms N = n,ngn,.

When the atoms are so far apart that atomic wave
functions can be used, the Bloch functions satisfy the Fock
equations. Let the normalized wave function around atom < ,

a_ » be Vg (x). We shall

whose position is R4 =§ Vm.,, 3

assume that VY's for different atoms do not overlap. The

Rloch functions will be
’ = =k ' R
. = exi
(2.7) V=g 2 STy

If we express lgk in terms of the reciprocal vectors bg
of the a;, [y =Z esPs ’4- then the conditions of period-

icity for the entire parallelepiped require that

(2.8) / hks

ng where ho = 0, .1, 2 ees, ns-l .

Thus there will be nyn.ny cholces of the triplets ( ,,, U %s3),

*The reciprocal vectors are defined by by .8, = St 3 these
equations are’ satisfied b T st 3 W
¥ b, = (agxaz)/ [al*azxas] ete.




or just as many Bloch functlons as there are atomic functionms.
To eatablish the orthonormal properties of the "‘[2 , consider

.Wfk; (x) Yk(x)dv
L2 HATEN 5y
(2.9) -
| = %éemi(ﬁ“ﬁ')'3«= 1 _/ek‘/eki
_ o Lr? P

Hence the Y, are related to the Y« Dby a unitary trans-
formation and the reciprocal transformation can be written

down at once.

(2.10) Y =% 'Zk Tl
Next conslder _
(2.11) g = { A DV =Zk SYpxe Yy 04K % )

The three Vk's involve three summations over the “v’d 's.
It is clear that the only non-vanishing terms cccur when the
terms in "\[/'i{“(x') and '}Vi(x') come from the same atom.

Hence S reduces to

(2. 12)-m‘3'§§; m[f(‘l?u R e R"]j‘ll}/(x)\ g al: 'l{f(x)
ZZ . R,, S (x)|____....a’x }’/(x)

ol d' Y‘ XX




If we put this expression in Equation (.57 awdl
suppose that x .18 near B,‘ s ¥e get

8.1 3 e=*f% H..[ T2 + V(x) + B(x) ~ SWQ(:’)\—- dx’- lu:]%

"2 v A - :

The Aoy . 1111 be zere, as can be seen by multiplying by
8%*1% ‘Bd  and summing over ® . The first term is Just &
the Fock equation fof one typ;e oflatom and 111 is the energy
of the solution.

As 2 matter of faet, this result could have been
seen without calculation. The single atom ’}Vx's are related
to the Bloch V", 's by a unitary transformationm, and it is
well-knowmn that;. a unitary transformation leaves the Fock egua-
tions satisfied.\ However, the method .of derivation used above
is suggestive of what may be true where the isolated atom pic-
turé breaks down. In that case, single atom wave functicns
cannot be used for outer shell electrons and 7/ x st be

represented by

(2.14) Vi = H—1}§ PR il s 'R"")I/ko( (x)

v_here the 2 ol for different atoms may overlap and in general
will be dependent on k . If the dependence on k 1s not too
extreme, we should expect that in the summation ever k in

Equation (22 ) the term for o =o' would be quite large




compared with those for of # of! and that the value of the
terms would decrease rapidly as | \ Ry - R d“ increases
from zero. From (843) we saw that as the electron moved about
the lattice in state'vrk, it always found itself upon an

atom lacking one electron in the same state as itself. We

‘could then think of the electron as carrying a hole about
with 1t, and pushing other electrons out of this hole as it
moved around. We would expect to find this property preserved,

probably to a lesser extent, in the exact solution.

Egee Electron Wave Functlong

This view is confirmed in another case in which a
solution of the Foek equations is kmown. That is the case

of free electrons where the Y , = &% * | For this
we find that the exchange expression can be integrated out

. and again represents a hole which the electron carrles about
| with it. We find on the average that this hole represents
an absence of one electron in the lattice cell surrounding
%I | the electron under consideration: Hence, at both extremes,
% that of separated atoms and that of plane waves, there is an
ﬁ effective hole of roughly the volume of ane'cell which follows
each electron through the lattice. This further confirms the

§ argument above that there should be an effective hole in Iinter-
: mediate cases. -

Another feature is discovered in the plane wave ple-

e A s S TEL T sl a an ma e i i ARA A e S S ik TH T i T W A e ks el i kW Y N
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#7. Bardeen, Phys. Rev. 49, 653 (1936).
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ture. The values of the exchange term for 2 given eleectron

is found to depend upen the momentum of the electron.® By

a straightforward calculation, it can be shown that this

r

" term is largest for an electron with zero momentum and becomes

negligible for highly excited electrons. This behavior be-

comes ressonable in consideration of the Thomas-Fermi plicture.

An electron with small momentum finds that all adjacent values
in momentum space are occupled; therefore, in order to possess
ifs allotted volume hs of phase space, 1t mast have a large |
volume of configuration space. This produces the hole about

the electron. On the other hand, an electron with almost the

maximuym momentum -- that is, one near the surface of the oc-
cupied sphere in momentum space -- 1s conscious of the wide
open spaces mear it and therefore 1s not so greedy of config-
uration Spéce or so repulsive to other electrons as the elec-
tron from the center of the densely populated region. It
has therefore a much smaller hole. It is interesting te see
if this type of effect is present in case of Bloch-like func-

tions.

Let us see what the effect of exciting one electron
would be in the Bloch approximation. Excitatlon of one electron

- i — —r -
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would be represented by replacing a Bioch function,

(2.15) Vko = j;ezﬂﬁ,.m % »

in the determinental wave function % s by a Bloch functlon

for an excited state,

(2.16) n=-3 ; R

Now this change will effect a negligible alteration in the
_Fog\k equations for V‘k » This follows from the fact that
- the denslty of charge introduced by any one wave .functiqn into
B or A is proportional to }/N . However, the A term
for Vt itself may be greatly altered. This term, using the

same type of caleulation as used in (2.12), reduces to
I | 2418 Ry ¢ 2 |
(2.17) s = e j)’co § x) 7, (x) dx1Y 0 (x) .
El?zéé '%1( 704' T(xx 5d "E—

In i:h:l.s case the exchange Integrsl may be very small. 9n the
atomic pleture S—"yz-(x')?&(x')dx' = 0 . The presence of the

1/r term will spoil the orthogonality of the functioms. How-
ever, we should expect the effective hole due to the ’-17'7 ex-
ehén‘ge to be much smaller than that for the \Yzlexchange.'_

So far in the discussibn, except for | , only one
type of atomie function has been used. Actually there is a
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double set of Bloch functions from each atomic level, one
with each spin. These other terms have already been included
in the deseription of B , and we must now see how they will
enter in A . In the Fock equation for }V’k > the A terms

- will be of the form

G £ S Y e oxg)
It 1s seen at once that there is no exchange between functions
of different spins. For functions of the same spin, we must
consider all the atomic levels., By the same argument that waé
ﬁsed with 7 s. W& conclude that tﬁe mosf important term is the
]\F’lz one, If we neglect the other terms entirely, it is
quite simple to specify the type of field in which the electron
moves, For a given electron moving in a filled band, the field
is that of the entife lattice and the electrons, B+V , minus
the potential due to one electronic charge distributed accord-
ing to the wave function of the given electron. This potential
follows the electron about so as to be on the same atom as the
electron. If the electron is in an unfilled band, then the
potential is just B+V , the hole being negligilble.

This neglect of the hole for excited states is not
as well Justified as the presence of the hole for filled states;
In fact, for the case where free atom functions are eorrect,'
it is distinetly incorrect. In that case, the excited states
of the lattice obviously correspond to excitation of single

atoms or waves of excltation, such as are used by Frenkel® 20nd
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Wentzel.® Our method would not give these states, because the
correct exéited atom wave function is a solution of the wave
equation in a fleld with a complete hole (atomic plcture),
whereas the lattice method does not give this fleld. The ques-
tion arises, why do the lattice and Bloch methods agree perfect-
ly for the lowesi state but not for excited states? The reason
for this is that the lowest state determinantal wave function
is actually the same for both plctures. On the other hand, the
single determinantal funetion for an excited state handled on
the lattice basis 1s not equal to any corresponding determinant
of the single atom functions with one excited atomj in faect, :
cennot be expressed as a linear combination of these at all.
Hence, 1t appears that the Bloch type of function was definite-
ly bad for the calculation of excited states, Therg'are other
reasons in connection with polarization forces in the theory
of dispersion which argue against the lattice treatment.

On the other hand, the tighter the lattice is squeezed,
the worse the fieewatomic picture becomes (especially for ex-
clted states, which genersally have greater spatiél extentlion
than the mormal state) and consequently the better the free
electron picture becomes and the more nearly correct are the
Fock lattice equations. In the intermediate region both methods
are inadequate, and it i1s not unlikely that the Fock method it-
self is not good enough. This is in harmony with the findings

- - —

*G. Wentzel, Helv. Physica Acta §, 89 (1933).
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of Wigner” in connection with the somewhat similar problem of
the correlation hole between slectrons of antiparallel spin

in monovalent metals. Actﬁally it is not of great practieal
interest that neither free atom nor lattice Fock approximation
is adequate., Satisfactory mathematical methods have yet to

be evolved for obtaining good solutions for excited states on
either picture.

For practical purposes, the Fock approximation is
replaced by a Hartree scheme. The exchange term is actuslly
considered to be a part of the potential according te the above
procedure, and the total potential is then averaged over all
angles according to the Hartree method. The resultant equation
for ‘yf can then be resolved according to the spherieal har-
monies, and the radial equation solved numericelly. The values

of Mg will give the energies of the one electron functlons.

A — A —— S — — i T o Flal S Sl S S Tl e S . T it il T ke L. W R ey S - - i
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So far in our investigation we have supposed that
there was only one type of atom. This made it possible to
write dowm Bloch functions which were sums over a single éet
of lattice points. In general, the situation will be more
complicated. For NaCl, in particular, there are fwo types
of atoms, each forming a face-centered lattice with every
atom at a symmetry center. For thls case, we must comslder
each Bloch type function as being formed of two parts: one
part'giving the be?avior around the Cl, the other around
the Na. For the levels arising from inner atomic shells, the
wave functions will not belvery different from the free atoﬁ
wave functions, and for them Bloch functions using only one
lattice type will be satisfactory. For the upper levels,
however, the wave functions will extend over both C1 and
Na atoms, being considerably larger about the atoms from
which they originateéd as atomic levels than aboul the other
aﬁoms, but belng appreciable, nevertheless, about both types.

In order to investigate the type of hole which is

associated with one of these electrons, let us build up a

Bloch type wave function. Let the atemic type wave function
about the chlorine atom at Ry be Va » and about the Na
atom at Ry  be ¢, . Then the Bloch type functions

would be

(2.19) *k = ;1%1;[ ; ezxiﬁ .R‘ifa _+; ezﬁyi .BYQ‘-]
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(4 proof that tﬁe correct one electron wave functions are
actually of this typelis given in Theorem II of a later
section.)

We will neglect the overlapping of ¥, | and Py
and suppose that § \\y .t %12 dx = 1 . The components of

the exchange terms will be of four types:

@ 5T, GO Gy A
2 iT; 1)y, @ rayext o, (X
(3§ 7y, (Do, @grEayax ¥ ()
(9 Sa. (xe (x');@%)-dxf 9, (%)

{Terms of the form

§ ¥ (xe, =) srarydx’ o (3)

will not occur, since ¥ _(x')e, (x') 1is always zero.)
o Y

The effect of (1) and (4) will be the same as that
found for the one atom type case. They iill lead to a hole
of the type |¥ % or \¢r\2 when the electron 1s on a
¥~type or a g-type atom respectively. (2) and (3) are sim-
ilar, so that only one of them need be investigated.

Consider the terms of type (2) occurring in
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(2.20) 8= Z. by W
—%’ZZZ SR RIAR f1y, 0| 2 geryare, (0

In evaluating this term in the Foek equation for ¥y » we
shall assume that the electron is located on atom Y , and
‘ealculate the contribution of the integral when the electron

x! 1s on atom o . If we call this tem

2#1/6 +R

dei(x) W Y@ (x) , so as to have it resemble

" & potentlal energy term, we find

(2.21) e

xigm - | . 2«44 (R -R ?
£ 1{3.' RYUin(I)'= xi{ﬂ‘ Y Sl*d (x')\ F(éfydx

and

s=27 Uy ) 2R ) .

We are interested in seeing how U, yi behaves and whether
or not it can be interpreted as a hole iIn the charge distri-
bution about the nelghboring atoms o when the electron

is on atom Y .

In order to Investigate this, we need the value of

2
slr, Gl Ty’

in © in(x). ‘A value of unity for the coefficient would

the coefficient oi_‘
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correspond to a hole on atom ¢ with charge distribution

(2.22) % e2xip£'(R‘-Rr) Z 82“1/1'(3-“'3«)
k ) .

‘'For the sodium chloride lattice, the unit vectors
are

-—--3—(011)- , @ =-g-(101) , & =-§-(110).

2 2 3

The reelprocal veebors will be’

]

bl=%(lll) , b =2(1T1) , by = (uUI) .

The displacement between nearest Na's and Cl's will be
' 1
P = (1/2)a(100) = -E-(al T ey - _33) .
Then Ry - Ry w1ll be & whole number of lattice vectors

plus /o "and can be written as

1 1 1 .
Ry - Ry = (my +5)ag + (mg + Plag + (mz + lag .

Now /g '
ﬂk =§ -%; bs where' jks =9, 1, 2, TRy -

el

Therefore;

2,
WANRLOEPAL L

Hence, the sum over k becomes
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Ja ezuiz(m. /7)) 7 Belf(matl/2) 7 ouif(n,+1/2)

Ly £z s
oxi (m, +1/2) 2xi(m, +1/2) 2x1(my+1/2)
= 2 -:L £ "'l_ e — =1
ol (m +1/2) 4 2ai {m.41/2)  ,  2xi (ma# _q
n N n, . | _ hg

1 2

Each factor here is of the form

T CTESVE) .

ny

Since the size of the erystal is arbitrary, we may choose
n, as large as we wish and expand these terms in inverse

poﬁers of ng . This gives

= - - 1 -
g2l -@i'—;'}@ -1 2¢1 (my +1/2) By
N |

+ Y.

Recalling that n nng = N , we find that (2.22j becones

| 2u1 /8, + (B, -Ry)
(2.23) - 1?? + terms in >~ ete.
% (ml+1/2)(m2+1/2)(m3+1/2) ny

This factor will in general be éomplex._ In pgrticular, for

/3 1= 0, it is puré imaginary. This means that the potential
of the hole induced on atom o due to the presence of the
electron onn atom YW is pure 1maginary. Such a potentizl
has no stralghtforward interpretation in quantum mechanlcs.

In making calculatlions, it is necessary to approximste the
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- fleld by one of 'spherical symmetry. This suggests that

we should consider the & atéms in.pairs? &« and &' ,
such that R4 - Ry = - (Ra' - By ). If we add the poten-
tials of these pairs, we find the net potentlal is reazl.
This. follows from the reversal of sign of the terms mi + 1/2 ,
etc., which make the ceei‘f_icients for & and of! complex
conjugates. For /91 = 0 , these terms just cancel in the
spherical approximation, and the exchange potential vanishes.
For values of (@, =and Ry such that

ezaifs « (Bg~By) Sty

r

the potential of atom pairs o and of! on the electron
at atom Y will be

T . S\‘# (x')\E 7—7-2 dx! |
x.3(ml+1/2) (m+1/2) (mg#1/2) " 1'% r(xx! )

An exchenge potentizl of such peculiar characteristies
a2s those given above is definitely without physical signifi~
cance. What the calculations indicete is that the Fock method
1s not appropriate for wave functions of the type (2.192).

| In fact, we are inelined to think that physical in-
tultion about these potentials is more relizble than the in-
formation obtalned sbove, For example, in the Cl-3p band,
the C1 wave functions ¥ are much larger than the Na func-

tions qa' . V¥hen an electron of this band is around & Cl,
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ghere will be 8 defect of almost one electron aboub thset

when 1t moves onto an adjacent

op the other hand,
mekes in the ¢ distribut
It is not reasonable to

atom.
ion there

Na, the hole which it

is much less thsn one electron.
suppose that a certzin gmount of the larger hole remains
We have no basis at present for

on the adjacent Cl stoms.
making a satlsfactory guess as to what fraction of the hole

We find, however,
p band are not very depende

in Sectlons X and XI, that

does remain.
nt upon

the results for the 3

Jue estimated for this fraction.

the va
e in regard to this

The correct method of procedur

e similar te thet of Wigner.* He wasd

matter would prpbably b

sted in a‘“correlatian hole® between gelectrons of

intere
antiparallel spin, however, whereas we are concerned with

the case‘of parallel spin.

Energy of an E;citgd gtate

The value of the energy B for the wave function

X (e.2) 1s
(g.24) H= f § % 8% ax (where dx' stands for
i % ﬁk"—ﬂﬁkﬂwkdx g'li‘zg.g.dx?.. ;nd ) |
1 2o —
Z Esfnee) ¥ s
Zk E $F, (0w, (0T (2 ) )—(——7 axax!
*5. w1gner, Phys. Rev. 48, 1002 (19%4) «
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If #k is réplaced_by ¢ and the difference between the

new H' and the old E 1s found, we get

B -H= ﬁ[-v’? + V] 9 ax - ﬁ?k[-vz + V], ax
- 2 g t=ml® |
* 1#k£or 9 J W;(x) Clogy” - U_g‘“ )?('ff"f Axdx?

- S&?(x)i #kzor q)ﬁi(sz') @(x?)ﬂ%ydxﬂfi(x)dx

+ ﬁk(x)#kz Swy (=) ﬂfk(x')mfde' ifi(X)dx

or ¢
=5y [(—':;'2 + V + B)g _Z%Aj@‘yi] dx

_ . .
- Sﬂ’k[(“v + V + B)‘;‘k 'Z Aik\i{i} dx
i
From equations (2.5) and (2.13) we conclude

Hence, the energy difference between states in the Fock
Jattice scheme 1s Jqst the difference in energy values of
the states involved in the exeitation, If several electroms
are excited, the energles will be additive. This will hold
80 long as the éross terms between excited functions are
negligible, which they will be if the number of exeitéd
states is very smell compared to the unexcited states, a

condition which will be generally fulfilled.
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After the potential field in which an electron moves
has been determined, the problem is to find a solution of the
Fock equation, or, rather, the Hartree approximation of it.

We are interested in solutions of the type

Vi = z egxiﬂ*.ﬂ"f/ku

where 18 defined for the cell centered around R

and 1s zero outside. The whole function is fintite and

K
continuous with a continuous gradient throughout the entire
" 1attice. The problem is to solve the wave equation inside of
any cell subject to boundary conditions on the surface of the
cell which insure the fulfilment of the continuity requirements.
The Na-Cl1 lattice 1s face-centered and has exactly
the same symmetry as it would have if the Na atoms were removed.
The fundamental cell is formed by assigning to & chlorine atom
all the space which is nearer it than any other chlorine. Such
a cell will contain one chlorine atom at its center and one-
sixth of each of the nearest six sodium atoms: one NaCl molecule
in all. Fig. C’ shows this cell. The space in the center of
the cell is assigned to the Clj the pyramids at the corners
to the Na. Since the Cl™ ionic radius, 1. 8&, is mach larger
than the nat ’ 1.93, a larger space is allowed to 1t. This
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is schematic and thé positlom of the Na-Cl dividing planes
are not to Scale. |
Another cell could be formed by interchanging sodiums
and ehlorines; the difference between these cells is unessen-
tial: 1in the end both kinds lead to exactly the same condi-
tions, For ease of visualization, the chlorine centered cell
is better and will be used.
The method of solution, as stated on page /4, eon-
sists of approximating the wave eguation near any atom by a
sPherieally synmetric wave equation. In the case of a face
_or body-centered metal, the wave equation is very nearly
gpherically symmetricsl. This is due to the fact that the
atoms are neutral so that the electron is conscious of the
field of the nearest one only and this is spherically symmetric.
In the case of NaCl this 1s true, but to.a lesser extent.
- In order to get sn jdea of how much error there is
in spheriéal symmetry, let us neglect the exchange hole for
the moment and use an ideslized model in which each ion is
represented by a point charge at a lattice point. HNext we
surround each atom by a cuble box coﬁtaining all points near-
er it than any other atom. The planes which contain the faces
of the cube are not reflection
planes of the lattice; in order
to be such, they would have teo
be placed so as to be perpendicular

bisectors to lines connecting like
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atams. Instead, they are perpendicular biseetors to the lines
connecting atoms of opposite sign. This shows that any point
in one of these planes is equldistant from pairs of positive
and negative charges, and hence that it is at zero electro-
static potential, Therefore, the fleld inslide one of these
cubes is 1dgnt1eal with that which would be produced by a
point charge at the center of a grounded conducting cube. The
zero potential of this field, of course, is far from spherical;
however, the inner potential surfaces rapidly round out to be-
come spheres. That this process will indeed oceur can be seen
by considering the edges and corners of the cube., At these
places the field is zero, and the equipotentials are widely
separated, so that the surfaces will move rapldly toward the
center as the potential changes, thus becoming moré neerly
spherical.

_ Anoﬁher indication of the valldity of the spherical
approximation may be obtained from consideration of the expan-
sion of the potential in spherical harmonlcs. The cuble sym-
metry causes only certain of the harmonics to be allowed, the
first three of these having &£ values of 0, 4, 6. The high-
er harmenlecs will fall off as % or r6 as f-—r'o, and will
allow the 1/r tera to dominate for distances only slightly
within the cube. The surface harmonics for L = 4,6, etc. are
snimportant for another reason. If the O0'® and 15% order
perturbation emergy of these with s and p states -- those
of the C1~ ion -- 1s computed, it 15 seen that s,p states
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have no geroeth order perturbation energy with these terus
in the potential. The s state has first order perturba-
tion energy with g€ and higher harmonics anly, the p with
f and higher, '
There is yet one more Justification for the method.
o far, onlj-the Madelung lattice potentisl has been considered.
As 1is well-known, the ions are not point charges, but negative
clouds of charge surrounding positive mucled. As soon as the
electron has penetrated through & small amount of the cloud,
the nucleus exerts the predominant force, and the field becomes
spherically symmetric. |
The potential about any ion will then be considered
to be of two parts; the potential of the ion iﬁself and that
of the surroundings. The former will be computed from existent
atomlc fields. The latter can be caleulated by various methods.”
However, since we are interested only in the Zeroeth order spher-
1cal barmonic of this field, we need make use of Madelungts
number only. Madelung!s number is s pure number which océurs
in the calculation of the electrostatic energy of ionis lattices.
It enables one to caleulate its cunergy per ion for a given type
of lattice in terms of the charge on the ilon and the lattice
spacing, g . For the NaCl lattice, we find that.the electro-
static energy per cell (4 molecules) is

o T R o S et e T T A . T e st ks . . e

*E, Madelung, Phys. Zs. 19, 524 (1918).
P. P. Ewand, Zs. f. Krist. 58, 129 (1921)
H. . Bvjen, Phys. Rev. 29, 675 (1932).
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o = =18.94 ¢
G

The energy per molecule,

®per molecule = § = ° 2.2 T - 02 Gy

i1s 1/2 the electrostatic potential at the C1~ ion times the
charge on the lon plus a like gquantity for the Ra+ ion. ﬁue
to the symmetry of the ions, this is equal to the charge at
one ion times the electrostatic potentiai of all other ions
at that ion.

' It is interesting to note that the number 0,872
~can be estimated roughly from the zero potential cube pleture.
The potentlal on the surface of the cube is 1/r due to.the
charge at the center, and therefore -1/r due to the charges
outside. What we are interested Iin, then, 1s the potential
at the center of an empty cube whose surface is maiﬁtaiﬁed at
a potential -1/r . This value must lie between the extreme

values on thé surface (Gauss mean value theorem) which are -1/(8/4)
for the midpoint of the face and
- 1/JZ(8/4) = - 0.58/J3(§/4) for a corner. However, the cor-

ner is certainly not as important as the center of the_face.
The correct value would probably be about halfway between_the
value at the middle of the face and the middle of the edge.
This gives [-1/($/4) - 1//B(8/4))/2 = - 0.85/(8/4) for
the potential. : o
Hence the potential at an ion should be taken_to be
the potentisl of the ion plus 62(0.872)/ (3/4) 4if the ion
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is W&} minus if it 4s C1™. In atomic units the e° 1s re-
placed by 8., After these potentials are known, and suitable
allowances are made for the exchange hole, the wave equation
can be solved for the radial functions associated with the
various spherical harmonics. The next problem is to form a
continuous solution in the elementary cell which satisfies
the proper boundary conditions. Before doing this, there are
three theorems to be proved about iave functions in a lattice

with centers of symmetry.

S - et R e virn
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FOR _THE FILLED BANDS

If we consider the crystal to be essentizally iomie,
the sodium will be in the form of ions. The upper or valence
wave functions will have practicaily zero charge density around
these, and therefore no hole. The field that should be used
around the positive ions will be just that of the pbsitive
ion or the same field as was used in metallic sodium. Wave
- funetions for this field have been obtained by Slater.

The field around the chlorine 1s not the same as
the ionic field, however, dﬁe to the fact that the atoms are
squeezed together, changing the charge demsity. 1In order to
ecorrect for this effect, the volume of space belonging to a.
C1” ion was estimated. The volume of the cell belonging to
a HaCl molecule (see figure of page 24). is (530)5 x 8=
800 At.,U. This is, of course, the volume of the duodecahedron
of page . However, a certain amount of this volume should
be allowed for the sodium atom; exsctly how much cannot bhe
decided until-a self-consistent solution of the entire problem
is obtained, A rough estimate was made from the Na ioniec

radius, which is 1.9 At.U. If we allow %a(1.9)5 =29 to
the sodium, the €l volume 1s 271. This is the volume of

a sphere of radius 4.1 At.U. A reasonable approximation would
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be to renormalize the ionic wave functions 80 as to have unit
charge 1nside a sphere of radius 4.1.

For his solution of the €1~ ion, Hartree tabulates ¥+
the quantity 2Z(r) which is the number of electronic charges
outside the radius =r . From these we find that 9.2% of the
3p electrons and 0.9% of the 3s electrons are outside of
r = 4.1. Hence, the potential of the renormalized 3p is
1.101 times that of Hartree's 3p and the renormalized 3s
potential is 1,009 times Hartreet!s.

The potentials due to Hartree's 3p and 3s wave
functions were computed and also the potential of the

_132252

2p core configuration. These were computed separately
so that the potentials due to a 33 type hole and a 3p type
hole could be found.

If Z 1s the charge inside radius r , then
:gz _ —% - This equation was integrated by Simpson's rule
to get zhe 3s and &p potentlals. If the radial part of
the wave function 1s P/r and SPzdr = -l S(—)z av =1,

,then the radial charge density is _1,P\2
( }® .« If the potential

is written as Z (r)/r , then crazp(r)/r =-4xp  gives
2 o

Z = - % . This egquation for the core configuration

1s°25®2p® was integrated by the Hartree methods™ for smalil

r (r = 0.0 to 0.2) and the first order 2Z equation for larger r .

T —— A oy

* D. R. Hartree, Camb. Phil. Soc. 24, 89 (1928).
++D. R, Hartree, Proc. Roy. Soc. 121, 282 (1933)
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The wave equation about one ion in atomic wnits is

-v¢+(v-e)w-o ,endif y=LE3g 5, (9,9) then
-p" +{v "‘Q;]' =0, Vj.sthem;alg;

r
the lon and 1s ' 27,

- p T potential due to the electrons. V
was chosen 50 as to be zero at r = 5.8 which corresponds
to & point half way between Cl atoms and should represent

roughly the limit of the Cl ion. For s fumctions, V

was computed for the configuration 1l1s 2532p6535p6

65325p5 That is, for 3s and

» and for
p, 4, and £ from 1s 2322p
3p , the hole was made of the same type as the wave function
\for which 1t was to be used. Por d and f , 2 3p hole
was considered more reasonsble than a 3s .

The &t defined above is not the Fock equation
parameter, since we have not teken into acecount the lattice
potentiasl. This is 2 x %§%§%T»= 0.66. The extra factor of
2 1s required by the use of atomic units in which the poten-
tial energy of 2 electrons is taken as 2/r12. If we denote
the Fock parameter by ?l ( £ for lattice), we have
e£=e-0.66.

The wave equations were integrated with enough dif-
ferent values of € s to allow interpolations of P and P!
for arbitrary & to be made throughout the emergy range.

~ For later use we shall rapresent the radial parts
of the solutions for the two types of atoms and for various

12 values by
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| 0o 1 2 3 4
Radial function aromd 2 2 1T A & [
Radial function around Ka s P D P @

A solution of SchrBdinger's equation about a single atom in-
volving only one radisl function, such as (x - y)/r-TT(r) ’
iill bte called a sphericel funection.

 The value of ¥LFl/y(r) et r=35.8, the C1-C1
helf distance, will be denoted @ , %, &, ¢, Y for the
Cl funétions. The corresponding guantities for the sodium
functions at r = 2.65 , the Na-Cl half distance, will be
indicated by s, p, 4, £, &3 the values of ¥(2.65)/¥(3.8)
for Cl functions, by @,» %4> Sc, Ve Yc';'the values of

d : R . L] L] *
a%.(.&&é)/\y(z.a by G2 ¥49 Sc’ Per XC ¢

B
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V.

SOMF TEEOREMS INVOLVING CENTERS OF SYMMETRY

In the Slater method of handling excited states,
it is assumed thaet the wave function in the cell at the
origin consists of two parts: a resl part which is an even
funetion about the center of the cell, and an imaginary part
which 1is oddf This assumption leads to comnsiderable simpli-
 fication in formulating the boundary conditions and it is
worth_while to prove that it will generally be justified.

Before proceeding with the proof, it 1s advantageous
to introduce some new terms which ﬁill considerably shorten
the discussion., First of all, let us call the part of the
wave function iﬁhgell about the atom at the origin the gellulary
function and denote it by ¥(r), r being the position vector
in respect to the origin. The correSpogdiné wave function
throughout the entire lattice will bé

Yn =. é;; ei&!oRa ¥(r - B“).
where the R, are lettice vectors. In the special case
where the V¥'s are formed of unperturbed atomic functions,
'v,f is called a Bloch function; in general, we shall call
it a lattice function. When the cellular part ¥ of the
'latticé function V¥,  is of the form g + iu we shall refer
to it as moral.. -Kbre generally, any function will be lmown as
mofal about 2 centeruof symmetry if it is of the form g + iu
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around that center. ' A function which can be made moral by
multiplication by a constant will be called a worthy function.
It is worth pointing out that worthy functions are really
a very restricted classj for example, (1 - i)xg + 1+ 1)y + 2)
is a worthy function around the origin, whereas = + 1+ i)(y + 2)
is not. |

| We sre interested in justifying the assumption that
all lattice functions have moral cellular parts. Such funetions
and their mmltiples by a constant will be called worthy lat-
tice functions.

THEQOREM I,
Any lattice function can be resolved imto worthy
lattice functions.

Igptroductory Remarks
That is, if we have a non-worthy functlon which sat-

isfies our boundary conditions, it can be resolved into one
or two worthy functions which 21so satisfy the boundary con-
ditions. So léng as this is true, there is no need of deal-
ing with other than worthy functions. Any more complicated
lattice function will be merely a lipear combination of these.

Proof
If ¥y ig a lattice function, it is obvious that

the complex cbnjngaté ?:& will be an equally good lattice
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function. 'A’.Lso, since the atom at the origin, like efery
atom, is at & center of symmetry in the lattice, the func-
tion obtained by changing x to -x, y to -y, and z
to -z will also be & good lattice function. Let us denote
the resultant transformation on the function ¥, by A¥y .
The result of performing both operaticns on a function willl
egain give a good function.

Let Yo = L o Tayr - Ro)
vy = Z.: R R Flar-ry )
ay =7 et Ray(-r - Ry) .
o

Since the set of lattlce points -Rg 1is the ssme as Ry

ay =/ e Pay(r v my)
. o _
Now ¥(-r + Ry ) 1s the same cellular function around atom
o as y§(-r) is aroumnd the origin. But y(-r) = Ay(r)
" 'by definition. Then A¥,  will be
AY, = Z ol ? "Bt 4F(r - Ry ) .
o
Now VY,+ AY, is worthy ‘
¥y =Wy * Ay T B [y(r - By ) + 8%(r - Rg)] -
e
' To see this resolve ¥ into its even and odd

parts ¥ =G+U .

Ther Ay =G ~U

Z
1]
o
]
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This shows that from a given lattice fumetion satisfying the
boundary conditions we can constrmct & worthy funetion sat-

isfying the conditions alsec. Another worthy functiom is
*wa = 1(** - Avﬂ ) .

In terms of these ¢"=(qu‘ - iy, )2

Coro to

A worthy lattice function is a worthy functiom.

Although the cellular part of a worthy lattice func-
tion is worthy about the center of the cell, it is not ob-
vicus thét the lattice function as & funetion throughout all
space 1s worthy about this center. Teo prove the corollary,
make the cellular part moral; this can be done in accordance
with definition of the worthy lattlce functions. Then, we
find

Wy = L oM R - B

%— ei“.ﬁ“ *(r 'Rd) =*a Py
and Ye = %(\vn + AV, ) . Ve bave seen, however, that

a funection of this sort is moral. Hence, & constant times
‘our worthy lattice function is 8 moral function which 1is what

we wlished to prove.

So far we have considered the functions worthy as

regards thelr behavior zbout one of the sets of lattice points
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- only. OSince both sodiums and chlorines are at centers of
symmetry, it 1s of interest to see if making the function
worthy about one set of lattice points makes it worthy about
‘the other set alse.

THEQRFM II,
In a lattice containing two sets of centers of

symmetry, & function which 1s worthy for one set is worthy
for the other set, and the phases ¢f the moral functions are

glven by the same wave vector for both.

Broof

We first note that the method of settlng up ¥
Insured that the function be moral about the point at the
origin, actuzlly moral throughout all space. We car then
write $v4 as G+ iUo . Let the displacement from the
origin, which is & symmetry center of the first set, to a
symmetry center of the second set be r Then there is a
synmetry center of the first set at Efn . About this second

center
= 13“‘("[@ + 10 1 . Therefore
*w; © e

*_\M = %.ei)!»PSEi“’P ‘GO + 1]3‘0] + ei“.P ‘G2f°+ 15%01
= %’- otHpP iéos){f [Go + Ggf']- 1 sinnp [Go - G2f']
+  sin *.P [Uo - U%°]+ _1_°°s"'f[Uo,+ Ugf]}
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Ad the - - r -
out the center at,o » G°+ 62/" and Uo'sz

are clearly even, whereas the other two functions are odd.

Hence, the expression in the brackets is moral and the phase
is ei H.f .

L]

Q-E.D.

This shows that we need only consider moral functions

around each type of atom. The lattice functions are built

up of these by summing over the cells. |

There is one further theorem which reduces the num-

"ber of boundary conditions considerably. If we look at the
cell centered about the Cl, page@3, we see that there are
three kinds of boundary surface: (1) Cl-Cl boundaries at

the surface of the cell. (2) Na-Na at the surfaee.j i
(3) Na-Cl inside the cell. The boundaries of type (1) are

the same as those met with in metals and need not be discussed
here. The type (2) boundaries are fictitious. If we make use
of worthy functions, the wave function around a given Na

will be the same, no matter from which cell we approach it,
and, heﬁce, these boundary surfaces do neot actually exist.

The boundaries of interest at the present time are those of
tﬁpe (3). In a given cell there are six of these, and, if we
attempt to satisfy the Slater conditions (continuity of ¥ -
and the pormal component of grad ¥) at the midpolnts of these,
we will get 24 econditions. The extra faétor of 2 is caused by
.the fact that the use of moral functions requires the fitting |
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of real and 1m§g1nary-parts separately. Fortunztely, we can
show that the actual number of conditions 1s only half this

many, some of the faces being equivalént. Let us call these
boundaries of type (3) internsl faces.

IHEOREM IIT,

- If worthy fumctions are used and the boundary condi-
tions are satisfied on one internal face, they are satisfied

on the other internel face palred with it by the center of
symuetry.

Broof

The proof is very simple. Suppose the wave function
¥ 1s worthy and satisfies the conditions on 6ne interneal
face. Then the wave function Ay obtzined by operating with
the center of symmetry certainly satlsfles the condit;ons on
the other face, and so does the complex conjugate A¥y of
Ay . However, Ay = ¥ , therefore ¥ satisfles the condi-

tions of both faces.
- Q.E.D.




i
&
:
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VI,

FORMULATION OF THE BOUNDARY CONDITIONS

80 far we have discussed the method of calculating
the wave functions for the various surface harmonics and the
‘general aspeets of the boundary conditlions on the wave fune-~
tions. The next problem is to see how we can utilize the
results of the former to satisfy the requirements oflthe latter.

The generzl method of attack has been that discussed
by Slater.” He required that the wave function and its normal
derivative be continuous at the midpoint of each face separa-
ting two atoms. We shall demand that'these continuity condi-
tions be fulfilled at C-Cl and the NaCl midpoints. These
midpoints are judged to be much more important thﬁn the NaNa
midpoints on thé basls of the ionic radii of the two atoms,
which are such that the Na and Cl ions touch and the Cl-C1l
lons almost touch one another, whils the Nalla ions are guite
far apart. A photograph of a model of Halite shows the rela-
tive sizes of the ions. From this 1t might appear reasonable
to Join NHa and Cl at their ionic radii. In order to Judge |
whether or not this was sensible, the total lattice potential
was calculated along the NaCl line. For this ecalculation,

Hartree!s™ fields of the Nat and C1- ions were used without

a—— ——— A S —— i s e e . = sl S S D sl il o A e T Tl W U A A A T Pl S

*J. C. Slater, Phys. Rev. 45, 794 (1934).
"+ 4 D. R. Hartree, Camb. Phil. Soc. 24, 89 (1928).




alteration. -.It was found that the potezi_tial had a very flat maximu
I-éggrmidpajnt. From 1t we should be inclined to choose the
~ NaCl midpoint for joining, This procedure is also suggested
by the &2 (L£+ 1)/.r2 terns in the wave equation. By
- choosing the midpoint, these are made equal for both atoms.
~ The next question is what these boundary conditions
require of our worthy functions. Let the moral functions for

two éorts of atoms be

c1 g(r) + tu(r) = ¢(z)

(6.1) _
| Na gy (r) + 1uy(r) = o, (r)

Then y = el B o(r - Ry ) +‘Zei"']}‘@ (r - Bg )
2 ) #1ir - B

Ak

where the R g represent Cl lattice points and H/‘ s+ Na.
The conditlons required for continuity across the 110 C1-Cl
face, for example, are derived as follows., The wave fynction
in the cell at R = a(%% 0) 1s e**' R tines the wave
function in the Oth cell. The midpoint is at R/2 = -é-a %‘% 0).
This point is R/2 1in reference to the 0*® cell and ~R/2
in reférencé to t.heé.a(llo) cell. The values of the cellu-
lar functions at these points are thus g(R/2) + tu(R/2) and
el R[g(Rj'z) - 1u(R/2)] . Similarly, the derivatives are
g'(’/2) + tar(&/2) ena e™MB(-g(R/2) + 1ur(R/2)) where
g .'mea'ns 4_ along the 1line R . For spherical functions,

- ds
then, <= 1s the same as %; o Equating the values of V¥

. . S el L . S i e il . T . e . W e . A W - ke T Nk P -y

#5ee Slater "Energy Bands in Metals®" for a more complete dis-
cussion.
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and thoss of ' , we f£ind the conditions

il
o

" (6.z) - tan(®-B/2) g +u
g' + tan(®-R/2)u?

L]
)
L}

For brevity, we denote tan(x-Rn/z) by T;,, » ete.

_ .Along the NaCl 1lines the conditions are found in a
similar way. Let a Cl atom be at 000 , and consider the
midpoint at R/2 = a(% 0 0). For the Na cell at a(%‘- 0 0),
this is the point -a(3 0 0). The moral function about the

Ra has the value ¢, =..g1(R/2) - 1ul(-‘:'l/2)‘ and the value of

' t
%} 9,(- R/R) = - g (R/2) + inl(R/E) at this point.
The boundary conditions are thus

g(R/2) + 1u{R/8) = ei“'R{sl(R/E) - 1u1(R/2)] |

(6"3;'(&/2) + 1ut(R/2) = MR gl(r2) + 1, (v/2)|

These equations, as was noted in connection with Theorem II,
mist be separated 1nto real and imaginary parts, since the
functions of g and wu are reazl. ‘

It is well known that such boundary conditions as
these are periodic in W space. In order to see this, con-
sider nr=HK + 2xb , where b .is_ a vector of the recip-

rocal lattice. Then in Equations (6.2),
‘ | tan W 1+R/2 = tan () +B/2 + xR°b ),
but Reb is an integer or zero, so that tanx'oR/ﬁZ = tan ¥ *R/2.
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To see that (6.3) is periodiec, we must use the actual forms
of the vectors R and b ., The R!'s are of the form

.a~% 0 0) and the b's of the form 1/a(¥1 1 1). Hence,
b = & 1/2. This introfuces a factor e "> =-1 on
thg,right_sidg of £ which is homogeneous in the Na functions
gnd can thus absorb the real factor -1 .

The periodieity in M space is not convenlent for
practical purposes, due to the fact fact that 2«b 1s not
a simple vector. In order to have a simple perlodiecity, we
replace by oxk/a . The lattice veetors in k space
are then (11 1); (200), ete. (1.e., k space as body
centered with lattice spacing 2.) The tangent vectors take

on a particﬁlarly simple form,

10 * tan% 3,3.(%'% 0) = tan%(gx + ky) , for example.

There are-thus 24 equations to be satisfled: 12 of
the C1-Cl type for the 6 different l_l 0 directions; 12 of
the Na-Cl type for the 100, 010, and 0 0 1 directions.
The T 00, 010, and 0 01 midpoint conditions follow by
Theorem IlI. B
| in order to satisfy these conditions, we shall ex-
pand the varlous g's and ‘u's 1in terms of surface harmenics
times the corresponding radiasl functions. 24 of these runctieng‘
will be needed, When the g!'s and u's are expressed as
linear combinations of these, the 24 equations give 24 condi-
tions on the 24 expansion coefficlients. The necessary and suf-
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ficient condition for a mon-trivial solution of these equations
i3 that the determinant of the system of equations vanishses.
This determinant will be a function of the radisl parts of

the wave functions which are dependent upon the energy, E?',
and of the vector k . For a given energy there will be
certain values of k for which the determinant vanishes.

Real values of k correspond to lattice functions and compléx
values to damped waves, which are not of interest here.

The next problem 1s to choose the expansion function
in terms of which to expres the g's and wu's . There are
‘several precautioné which must be observed in choesing these.
In the first place, we must have at least 12 Cl functiens,
in order to satisfy the 12 conditions of type 1 which do not

| involve the Na . Then we must choose 12 more functions to
supplement these. Let us consider first the case where these
are all chosen about the Na 1on, For reasons indicated

below, this will be called the Cl-Cl case.

Cl-Ci Case |
For this case we have 12 functions around the C1l
and 12 around the MNa . The 12 Cl1-Cl conditions are homogan-
eous in the €1 functions and give rise to a determinant
in k and g, . When this is solved for k , the funetion
around the Cl will be fixed. The 12 KNa-~Cl conditions will
not be homogeneous, but will relate the 12 Na funetion co-
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while the Coefficients of the 1 fﬁhctions &re all zerg,
‘Since the boundary Conditions for thege functions are thot P
84 9 vanggh ot the Cl-yg midpoints, there gpe no re-
strictiong Placed on k . %hen the Bnergy is such, then, that

be glven,

_.-._..,...__........._.........__.._._..._......_.,.._.._.._.__.._........_._.___

H. N, Krutter, Phys. Rey. 48, 864 (15:357.“"" __________________
' Thesia (Ph.D.), Physiecs (1935) .
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u type

Ir() , Ir(m , ()

3 2 3 2 - 3 _ o2
X = 3K pen) ér__%.ﬁxz..F(,) , 285BI prpny

3
I by r

-1 Case

The simplest set of conditions which will give de-
pendence on both Ha and Cl functions will be obtained by
ignoring the C1-C1 conditions entirely. Thls leads to 12
equations of type 6.3. A natural cholee of 12 functions is then
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L s G- nf A, F-BRA

c1
x/r Tr, Y/I’TT » !/r-l-r
- s, -, F-DAnrd
N .
y x/rP , y/r P s EB/rP
Double Join Cages

By choosing more than 12 functions around the Cl
and the remainder of the 24 around the sodium, sets can be
obtained which will satisfy both sets of boundary conditions.
Possibilities of this type will be considered in Section XTI,




VII.
Cl-Cl CASE

As was explained in Section VI, the C1-C1 case is
equivalent to the general face-centered case dlscussed by
Krutter. The relationship between k and % 1is gliven by a
12th order determinent which it is not practical to handle
in its full generality.

The purpose of the present section is to obtain ex-~
pressions from which the values of k as a function of &
can be camputéd for a sufficlent number of planes and lines
in momentum space to allow reasonable extrapol#tions to be
made to all values of k.

In order to obtain equations which can Be used for
calculation, 1t 1s necessary to restrict k to simple lines
or planes in the k 1lattice. When this is done, it is found
- thet the resultant symmetry of the cellular boundary conditions
enables the 12 functions to be split into smsller sets, each
set satisfying the conditions separately. In the language of
group theory, thls procedure may be described as fo;loss:

The vector k 1s 2o chosen that certain symmetry coperators
-of the point group for the lattice leave it invariant., These
operators will clearly form a sub-group of the point group,
and the transformations of the spherical functicns for these
operators iill give rise to representations of it, It is

well known that in any problem having symmetry, solutibns of
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different symmetiry types do not mix. In our czse, this means -
that functions transforming in different ways under the sub-
group (i.e., belonging to different representations) will

not mix. In order to see how we can apply these 1deas and

to establish the notetlon used im this sectiom, let us cal-
culate the energy bands for k in the 100 direction

The Figure shows the face-centered cell as seen
from the 100 direction. For k in this directicn, the six
T (tangent) factors occurring in the equations

-'Tg +us=20
ga+ Tu'= o

of Sectlen VI. , page 42 take on only two values:

Bence, the boundary conditions have symmetry of a square. There
are four one-dimensicnal représentations of this group and
one two-dimenSiohﬁl representation. The scheme of values 1s
shown in Figure 7b.

The value which these types give rise to on the
110, 101, 110, and 10T faces and the 011, 011, 011, and OI1
faces are 1ndicﬁted in Figure 7c.
' Let us ne#t-elaasify the 12 spherical functions of

the face-centered lattice, in accordance with the above scheme.
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In order to simﬁlify i:he expressions, we shall write a sur-
face haermonic, such as (xz-yg)/rz as (xg-ye). No error
will be introduced, so long as we always use values of Xyz
like (110) etc., for which x° + y° + z° = &,

The spherical functions are |

g > o (- DA, & - )N, vyl ,zx A

u  xIL yTL 2Tl <G - He, 362 - D, 262 - Hd

When classified according teo 100 symmetry, we gét

l—l Z; (2x° - y2 - zz)A ’ xﬂ-

|—‘.a _ none

M -5 , x6°-D

. 24 - |

B oA, yIT, y*-H¢ |
xz O\ , z11 , z(yg-xz)cb .

To solve these, we meke the simplifying assumption that
Z =11 =A = 49 = | = at the cell surface;
’ ’

IS
;hen .Z=°'9ﬂ=ﬂ:

1l

I
& » ¢ P .
Solution for r..

Let g = AZ' + B(2x2 - y2 - zg)A

u=CxTT'

Then, for the T,4; = O face, we find that
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Ac -~288 =0 , or B=-§§A.

For the Tilo =T face, we find

-T[A+-§%A] +C=0

Acr+A—az + TCx = O .

The necesssry and sufficient condition for the existence
of a nentrivial solutlon of these equations for A and C
is that the determinant of the coefficlents vanishes.”
g
-T(1 + 28)‘ 1 |
=0=1%(25 +o)pes)+ S .
3
S g T_:t .

This gives the comndition

(100a) T° = _ ;‘(g—g‘,‘% .

Similar ealculations for the other sets glve the remainder
of Krutterts 100 equaticns.

- 2 8
100D ™ = . o=
(2000) [ r
(100e) r; "~ No relation between energy and momen tum,
‘merely § =0
(Lood) } 2 2%
¢ = - &3
(100e) \'; #tp

The symmetry treatmemt shows why the zero width éﬁpaars.in
the 100 direction. One of the symmeiry types is aﬁtamatically

-———————-wl—----——--_———-u——-———-q----_-——-——-—————-n---—.—.——-——-——-ﬁ-nw—--

*For a discussion of homogeneous linear algebraic equations,

see, for example, Dickson "First Course in the Theory of Equatiocns,"
Chapter VIII. '
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The pessibility of such am occurrence is an indication of a
weakness in the Slater conditions as applied to midpoints
only. If more points on the intercell surface were used,

this flaw wduld be removed.

When kz. is zero, the only symmetry operation:

. which leaves k invariant is the change z=—>» -2z , This
requires the funetions to be. split into even and odd functions
in respect to the powers of 2z . The odd functiens are

o0 zxAD , zzxA\ ; 2zl ;25-v3 .
The boundary conditions for this set can be solved and give
2 ,icd.y]. [ s1sa.2) .
(0010) [Tml +2 8@+ q:')] [TO11 + 284 + D
leel _ L)%
336 - 3]
There are elght even functions in 2z . These are
. o A |
7. -PA, P-PHD, o b
xTl, y 11, =% -7}, vz - b .

It 1s impossible to get a usable expression of the form (001e)

from these. However, the‘salutions in the 100 direction are




—
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already given in ‘_i’ r; and r- . BSolutions are zlso
obteinable in the 11C direction. These are given by
Krutter and will be tabulated later.

8, A New Line in the OO) Plane, Line I.

It is possible to effect a split of the even fune-
. tions along the line k = n(loo) + (010) 1in the even funce~
tions of the 001 plane. The fundamentzl reason for this 1s
that the line k = u(100) + {010) 1s formed by the inter-
"seetion of the 001 plane with am 010 plane in momentum space,
- This means that we should be able to split the functions into |

even and odd for y > -y, as well as z—> -z along this

) 111190

The tangent fsctors sare:

= 8 _ x .
Ti10 = tang(u + 1) = - cot su==C

.3

fhop = tang(a - 1) = - cotfn == ©
Ty = tan%(u') =T
Ty0T = tang(e) =T
Tpyy = teng(1) = o
TouT = tang =00 .

Flgure Te shows the symmetry of the tangent factors, which
is the slgebraic consequence of the symmetry stated above.

e - e o “h s et —— i — 1
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Digression
It 1s of interest to point out that similar lines
exist in the face-centered k 1lattice for the body-centered
space lattice. One of these is in a 100 and a 01l plsne,
another is at the intersection of a 011 and 011 plane., See
Figure 7f. | |
Sylitting the funetions according to the above

scheme, we have:
Even iny AL , B(2x® - y¥ - 25D, pG® - FHD
ExT] , Ex (-39

0dd in y AxyDN, ByIT, C'y(22 - x2)¢' .

Even In y . solution
Since there are five functions in this set, the
boundary conditiens.will lead to a fifth order determinsnt.
Some of the laber involved in expanding the detefminant can
be avoided by eliminating one of the coefficients before
setting up the determinant. The conditions on the 011 face
are o
g =u =0 .

The wu' 1is sutometically fulfilled and the other gives

(011 face) A-2B=0 . or B =2

Using this value of B 1in the other equations, we have
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(101 face)
-T[A+-:-|'§A-D] +E + Fl= 0
[Ac'+-%@k8 - D8] + T[Ex + F@] =0
‘(llo_face)
cla+3aen] +[e-¥)=0

[ac+ 2aS + D§] - c[ex - Fe] =0 .

The determinant of the coefficients of A, C, E, and F is:

(1) -2 T 1 1
(2) o+ 39 -3 Ts Te |
(3) %6, c .l -1
(2) o+ g8 8 ox -0y

This determinant is most readily expanded in terms of minors

of the first two columns. The main adventage of this procedure
1s that T and C ean be factored out of the terms and that
TC = 1. Letting w stand for @ + (§/2), and indicating
the rows of the minor in parentheses, we get the following

terms for the expanslon:

R . — .y e eems W e e e e



(12)

(18)

- (14)

(23)

(24)

(34)

1.5
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-

1
.

(§-0)(p - »)

ug

(¢ + 28)(x + 9)
(o +28)(x + )
2( .S + 2a)

(§ -0)(p - #

Collecting terms, we obtain the expression

I, (P +0%)(ec +5)(x+9) + 2(5-0)(p-x) +
| +28(§+2c) +esp =0 .

Since T°C® = 1, this 1s a quadratic in T° for which

the solution is
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We may eliminate C by the Oll condition, which

glves . _
- Bx + Cp = 0 or ¢ =- (2/3)B . The

deterninant 1is

: 1
o ey
= ax
® -C{2x)
2 2,11

This completes the investigation of the even fune-

tions of the 001 plane along the line k = u(100) + (010) .
f,et us now see how the odd functions behave. one solution of

Equation (00lo) when T,y 00 18 given by

2 ) 1
Ic T =-§(%+$) .

This is obviously a companion to I, above, and will involve

the functions _
xZA ,- ZTT » Z(xg- 2)¢ -

The function yzJ\ has been slipped through the net;

however, remembering its behavior in the 100 direction, we
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see that it gives a zero width band with

Id S=oo -

lane
For the 011 plane k, =k, . This means that we
can split functions int odd or even with respect to the re-
flection y-» 2, Z2-9> 7 .

; The ( g8t o 1

The odd functions are:

A% - DA, B v-2DA , oy - Z)'IT » Dx (7 - 2
£ [v:2- -7 - B .

The tangent factors are shown in Figure 7g. It is necessary
to consider only.four directions for the tangent factors.
The other two possible directions, 110 and 101, zre equivalent
to 101 and 110 because of the 011 reflection plane.

Before setting up the determinantal condition, we
' sﬁall eliminate the coefficient E . 011 gives g' =0
eand u=0. The first is automatically fulfilled for the
odd g functions. The second gives

i
i
Q

]

+8C + 2E =0 or E
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The other conditions come from 101 and 110; none from 011,
since all the functions vanish there,

(10T face)
-L{-Aa +B) + C+C-D =0
" (-a% +B3) +Licxk + Cp - Dp) =0

(110 face)
X{(A+B) + C+C+D =20
(a5 +B§) +X(Cx + Cp+ D) =0 .

If the determinant is set up and expapﬂed, we obtain the

expression

- 2 B (x+3 g ., 8B (st 5{«:3%2'
(01T0)  (Tyy0 * Tolrre) ) (Ti01 * 2g(ste ) z[% #tQ

§.  The Even Set of Q11

E Z ’(2752‘3'2‘32)& P) vz, I(Y"'Z)A
_KTT, v+ 211 , [3,*(:1:7a - 2°) + z(x_'e - gi\CP

For the even functions we are agéin reduced to solutions in
special directions. Krutter has given the solutlons for the
100, 011, and 111 lines lying in this plane. These will be
tabulated later.
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Two new solutions for the e#en function set have

been obtained. They are représented by the lines

11 k

u(100) + $(011)

IIT - k= (1 - u)(100) + u(011) = u(I11) + (100).

The arrangement of these lines in momentum space is shewn in

Figure 7h.

7. Line II.
k = u(100) + $(011)

The advantage of these lines is that they glve rise
to simpile seis of tangent factors, so that it is not necessary
to deal directly.with'more than fourth order determinants.
There are fouf independent faces of the cell for functions of

the E +t{ype, Fig. 71. The tangent factors are

1 -
Tio1 = tan%(u + §) = tan%(w+1) = -cotw=~C
= ¥ iy = ¥ =
T30 = tang(n - §) = tang w T

- - 1
TOTi =0 | where w =1 - 5 e

Toyy = tens(1) = @
We shall next arrange to choose certaln linear com-

binations of the original functions which satisfy the condl-
* tions on 011 and 011, and then use these functions to satisfy
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the four conditions of 101 and 110, To.do this, it 1s best
to classify the functions into type (1), even in

Z - §

y—=> -z

and (8), odd for the same transformation. These are
o E)gzZB

g* AT B(2x -y -z )£SH\, u,3 E x11

gr  Faly+ 2D , w2, H[y(xz-zg)%(xg-yzh

The conditions on 011 give g =0,
Ac - 2% -D§ =0 .

The conditions on 0l1 give =0,

&
A -8B+D=0 .

Solving for B and D , we find that the linear combination
of the terms of g, which satisfy 011 and 01l is

(5 + <)

gl{Z+ %E{-i- 1)(2::2 - y2 - 22) -l--%-(% - 1)yz A}_J__g_

Thils function takes on the same value (arranged to be unity)
on both 101 and 110 (it must, since it is of type 1j.

Its normal derivative on these faces is

(5¢ +8)/(s+ T/5) =Y .
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A similar process can be carried out for the u,

type. The 011 condition then requires that
Gg + Hp = O or H= -
The linear combination _
up = {(:H— DT - £{5G® - 2%) + 2° - ye)]d;} /(1 + a/g)

has the value 1 and the.derivative

2x/(1 + x/9) = p on 101, and minus these values
on 110,

We can now replace the original 7 functions by the
four functions

Agq Fx(y + 2)O , B T[ , Gu, .
These functions satisfy all the conditions on faces 011 and '
011; the E and F terms, because they vanish there; the
gy and g terms, because we have so chosen them.

The conditions on the other faces are
(101) |
| -(-C)[A + F] + E+G =0

py +F8 + (-o)[Ex + Gul= 0
(110) S
-T[A-F}] + E-€G =0
ay -FS +7[Bx - 04] =0

or




c C 1 1l
% ~Cx - N en

=0
-T T 1 -1
Y -9 Tx ~-Th

Expanding in two rowed minors of the first two coluuns, we

easlily get

I1a (€% « T (Y+8)(x + ) + 2(§-Y)(p - #) + dap + 4yf=C

Remenbering that c*1® =1 , We can solve for %

Y 2(xu +X5)

Er+8)zx + ;)

™ =at Ja® 1 , where a =

Another solution along line II can be obtained from
0Ilo , the odd solution in 01T, by replacing T35, by c®
anﬁ Tidi by-‘I‘2 . This_is not particularly useful, since
the odd set can be plottéd for arbitrary k . It gives rise

to an expression of the form
ITb a(c+H+v=0 .

2

The symmetry in C° and T° shows that an increase

of % in the phaSe will glve another sclution. Since the
phase 1s £ w = £(u - 1/2) , this means &n increase of 1

in u.. From Flgure 7h? this is seen to be just the correct
periodicity. A.change ;f 40 to -u is equivalent to inter-

- changing C and T » and leaves the equation satisfied. A




e —— e
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further check of the solution can be obtained by comparing
the condition given by u =10, %=1 =1 with that obe
tained from the solution worked out for the 011 line at the
saﬁe point, The detalls of this check will not be given

here. However, a similar check 1s worked out as an example

on page T1i.

8, The Line ITI, % = {v - 1){100) + v(011)

This iine is equivalent to
X = (1 - v){100)+v(011)

This line, like line IT, has a relatively simple

set of tangent factors. They ére:

Tio1 = tan%(v - 1_% v) = - cot xv = - C
Tpy1 = tanf(2v) = tan «v = T
Ty1p = tan%(v -1-v) =
Tor1 = 0

The conditlions on 011 give g =0 and u=0 3 on 01T

g=0 and u=0. Of these, the condition u =0 on

011 is automatically satisfied for even functions of the

011 plane. ﬁé shall proceed as for line II. Linear combina-
tions of g end u functions will be found which satisfy
the conditicns on faces 011 and 110. These will then be used
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to give a fourth order determlinant for the couditions on
011 and 101.

The even functions of this plane are:

Az, B[Exg - y° - 2° eyz + x(y + ZﬂA » Dyzh, Ex(y + 2)B
Fx11 , G %(x +'y + 2, H[y(32 - xg) + z(yg - xg)]q? .
Here certain linear combinations of the A ang TV fune-

tions have already been made, in order to simplify the later

expressions. The conditicrn on the g funetions give

{011) Ag -D§ =0 or D A

=
%
{130) A-E=0 E=24

'Hence, eliminating D and E , we find that there are

two linearly independent g functions satisfying the con-

ditions on OI1 and 110. These are the B function and
A{Z + [—E— vz + x(y + 2)]A} .

The condition of 110 on the u functions gives
F + Hp = 0 or H=-x/pF .

HBence, the u functions to use are the G function and
F{x'n + % \:y(xg = 2% + z(xF - yz)}cb} .

The conditions the other faces are then
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(011)
rla+Ea-a] —zefoFec=o
BeA - 48B + T[-2¢F + #6] = 0

(101)
c {22 + 28] +tQ+HF+6=0
(F+8)a+28B -cfesF+ xG] =0

The determinant of the coefficients of ABYF G
is easily set up and, by expansion in the customary manner,

gives

u T {“‘E"(“S-) (« +30) + (3-0)(p - #) + 5(§+20) @+2)

+ C° (r+2%9) (9 + %) ‘=T‘2a + b+ eC®

This leads to the quadratic in T2

a(T9)% + (%) + ¢ = oO.

Another solution is obtained from 011lc, the odds
- 2 2

of the 011 plane, by replacing TlOl by C and TllO

by co . This necessitates the vanishing of the factor in-

veolving T%Gl » thus leading to

_ | 2 _  S(x + 3 |
IIIb C'“W | A

If we regard this as an algebraic equation for » We see
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that it is linear and has one root;'this corresponds to the
fact that there is only one TI funetion in the 011 odd set.
In ¢ it is gquadratie, corresponding to the two ¢ functions.
In 8 1t is linear; however, there are two § functions
in the set. This suggests that there is another soluticen
gimiisr to Id .

Such is, in fact, the case. The function

(67 - 2D + x(z - 9D

1s zero on 101, 011, end OI1. The conditions on 1I0 give

IIilc A=0 or 2= ’
a zero width band. |
These two new lines, II and I1I, give a considerable
amount of information about the contours in the dTl plane, as

may be seen from thne contour maps in the set of diagrams.

A ine k = g 1) + 1

_It Wwas found that a reduction of the twelfth order

determinant into two sets could be made along the line

k = u(0ll) + 1/2(111). It is observed that the interchange

of y and 2z changes k to Xk!' = -u{0il) + 1/8(111) = -k + (111),
Since 111 is a lattice point of the Xk lattice, the inter-
change of y and 2z reverses the momentum of the lattice function

from k¥ to -k . This suggests classifying our g and u




- 88 -

funetions into typell, even for interchsnge of y and 2z;
and 2, odd for interchange of y and 2z . If this is done,
the cellular function for a solution of the boundary condi-

tions may be written as
¥ = (gl + g2) + i(ul + u2) .

Interchange of y and 2z will give ¥' , a function with

wave vector -k as explained above,
#’a = (gl = 52) + 1(111 =='112) -

The complex conjugate ¥' will agsin have momentum k .

From ¥ and V' , we can get two funciions

2(g1 ¥ iug)

-
%
<!
H

2(g2 + iul) .

-
'
]

Hence, we need only consider comblinatlons (51’“2) and
(gz,ul). A1l other lattice funetions for line IV, will be
merely eombinations of these types.

This same conclusion can be reached by a consideration

of the tangent factors. Figure 7k shows six independent faces.




poa

k" bl

'Fig. 7 k




The tangent factors are:

T4p = tand(+u) = 4T
= # 2=
oy = tenf(w) = T

Tyjo = tamg(utl) = +C

TorT = tan%(zu) = 8
: — # =
T011 = tan§ = 00

| We néxt note that 85 and - mast vanish wy must vanish
on 01I. This follows from the conflicting symmetries of
g and 2 , and u and 1 on this face; thus
go(011)

property; hence, gg(oii) = 0. The proof is similar for wu,; .

W

+ gE(OII) by g property and = - g2(01I) by 2

It is also evident that 2 type functions vanish on 011,
Hence, there will be no mixing of (gl,ug) and (329“1)
on 011 and 011,

Suppose next thatacémbination of (gl,ug) satisfies
the conditions on 110. Then on 101 the tangent factor changes
sign, but so does v, S0 that the solution is good there
also. A similar situation is true for 110 and 10l. This
argument can be repeated for the (gz,ul) set. Thus, from
the tangent factors we again find that the solutions will be
of the form (gl,ug) and (gz,ul).

R - — ————— Ay FQ F ~F v F om—er v m P m r e e =l
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The (51:“2) set will not be worked out., It leads
to a sixth order - determinant which eznnot be reduced
further, since all of the symmetry conditioms have already
been used. If it were very desirable to have the solution,
it could be obtalned by a brute forece expansion of the deter-

minant. The functions of the set are:

1 Z sy, x(y+2)4, (212 - yg - ZS)A
Uy (v - z)n R _x(y2 - 22)¢ , [y(xe _ 22) _ z(x2 _ ys)]d)-'

There are 7 functions, znd the number of conditions are:
2 on 011, 1 on 011, € on 110, 2 on 110; or, 7 in all, This
indicates that a satisfactory solution exists.

The (gz,ul) functions may be handled satisfactorily.

The functions are:

g, My -2, BG°-5Ha

'ul F T, Gy+ 21T , H[y(xg-zg) +z(xz-y8)]¢ .

We proceed as for lines II and III by satisfying the face
not involving T, C, or S . On 011, the condition is
g=0 and u=0., The g condition follows, since we

have €05 the other gives

2xG - 298 = 0

-
o
L]
+
'GA)&
L]

Hence, we shall use the two funetions of 8o » the F term,
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- and G['(y'-!- )T + % {y(x2 - 2%+ z(x® - yg)} CID]
to satisfy the conditions on 110 and 1I0. This gives

(110)
: e =
~ofa+B tre s He = o
§4+ §B - C[aF + 2¢6] = 0
(1T0)
- -?T[-A+B]-§F+(l.+%)6=0 |
[-84+ 8B + T[-#F + 2x6] = 0 .

The determinant is set up snd expanded as usual, giving

ITa (c®+ 1) 8x(s+ -g») + 2[82(1 + %) rexf) =0 .

10. Checks on IV, and I.

This formula gives an Interesting example of the
type of check which can be obtained where various lines cross
in Xk space.

Line IV intersects line I at the point (5 1 0). At
this polnt, u = 2 for line IV and u =2 for line I.
Hence, all ¢®1s and %15 are unity for both lines at
this point. This means that for a solution on line IV we

must have
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4

(i) 2(5::)(3.-1- %) ,+ 2[82(1 + %) + 2::2] =0

and similar expresslons hold for line I. If our solutions
are cbrrect, . we should expect all the relationsﬁips which
satisfy (1) to Satisfy certain of the four solutions of
line I. By inspection of the functions of lines I and 11,
we sece that the functions of line IV zre contained among the

sets of line I as follows:

Punetions " Line I

-0, =TT Ia

x(y-2)8, (y+2)TT, [y(x2-32)+(x2-y2)Z]¢b combinations of Ik and Iec

" Hence, we should exﬁect (A) to give itwo roots for ) , one
of which satisfies Ia , snd one of which satisfies Ib and
Ic. Ib and Ic are degenerate at this point. The same
statement should hold true for the x roots. The one root
for ¢ should satisfy Ib and Ic .

The roots of (i) for § s, ¥ 8nd ¢, are:

$=-x , -2#/(l+§)
¢=-§, -8/(2+ Y
# b

PE - +s) .
The conditions reguired by I are:

1o (28+0)(x+9) * (5-0)(p - #) +8( 5 +20) + 3xp = 0

N —— e iy o e e a . e ————— ——— —————
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The first roots, % = -%, satisfy Ia . The second roots
and the ¢ root -- all three are algebraically equivalent --
satisfy IB . Thus, the check is satisfactory.

This ﬁype of check ls very convinecing, sinee sall
of the terms in eguations Ia, Ib; and IVa are involved. The
same situation does not occur with the line III, for example.
Where line III crosses 100 and 111, some of the tangent factors
become infinite leading to conditions of the form x = O
or ¥ = ®. These usually involve only one or two terms of
the expressiong st one time, and an algebrale error of a
numerlcal factor would not be detected. Such an error could

ﬁot escape detection for the check glven above.
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VIil,

THE METHOD OF ‘k-b» O

~Although we must abandon hope of getting usable ex-
pressions for the twelfth order determinant for general
points in k space, it is still possible to carry out cal-
culations for a wide range of Xk directions, if k 1is
small enough. This is true because it 1s possible to expand
the determinantal equation in powers of kx for smail k .

In order to see how this is done, let us represent

. schematlcally the twelfth order determinent. There are S
g functions and 6 u functions in all. The conditions on .
¥ for 8 independent faces of the duodechahedron glve equations

of the form
(8.1) -Tg +u=0

and the ¥' condlitions are

(8.2) g + Tat =0 .,

We will denote the 6 even functions by A E;, Aogy A8y s
whers the At's are the variable ccefficlents, and the six
uls by Blul, sesy Bsué »

It 1s alsc necessary to use an index for the face

. on which the g's and wu's are evaluated. Thus, the ¥

equation for the third face would be
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The twelfth order determinant would then be

L™

(8.4)
“T1g3; TaBpy - -+ Tifyy Y1 Yy v+ - Ug
-Ta816 -Tgbog * * + ~TeBgs . Wi e o - o Mg

1) ] | ] ) 1 [}
€11 oy * - ¢ gg1 Ty Tavgy o o o TqUgy

[} 1 [ ] | T | ]
€18 gog * * ° Bsg TgY1s ‘e%2e * * * Ig%s

If this is expanded in terms of six-rowed minors of the first
six columns, there will be first of all a term independent of
the T factors equal to the product of the uw and g' minors.
Then, if we omlt one row of the g' minor and replace it by

a Tg row, we will get a term of the form
t
T2g5u5 gu .

By omitting still more rows of g' , we get terms of the

form
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(gru)d(eu)® , ™ (gtu)3(gut)® - .« »
le(gu')s .

Thus, schematibally we have -

(6.5) (grw)® + 12(eu)®(gur) + THgw)t(@)® + - - - =0 .

It is seen now that if either the g' or u determinant fanighes,
we have a solution for T =0 or k=0 . The easiest way
for g!' to vanish it for one of the radial fanctions in the
spherical functions 9 te have zero derivative. Then an
entire column of the g' determinant will vanish.

Suppose that the radial function does not have zero
slope but a very small sloye,qsay.' Then we can consider
powers o_f g in 8.5. The first term will be of the first
power in q and all the others of q°-. This follows from
the fact that if we replace a row of the g! determinant
by & -Tg row, the terms involving -Tg 1ir the first column

" will not have any first column g! as a factor.
Thus, T2 will be of the same order és q and

(8.5) can be represented by

(8.6) ag + bTZ = 0

where higher orders of g are omitted. TFor small k ,
eny T° is of the form ——(kz + Xk )2 . Hence, (8.5) will

be quadratic in the compomnents of k . .Sinqe-our problem
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has cubic symmetry, the only possible form is

(8.7) g+ (b/a) (€2 + 1;32, + ko) =0 . S

For small values of q , ¢ shoulé be & linear function
of the energy. Hence, the equal energy surfaces wlll be
spheres and the energy a linear function of kE .-

Now the process as outlined above is impractiéal,'
due to the great difficulty in obtaining the terms of (8.5).
Hdwevér, in order to evaluate the coefficient in (8.7),
it is necessary to know the relationship of k and q fer
one peir of values only. This can be done from the solutions
in any of the three directions 100, 1li, or 011, If the
energy curve 1s kmown in any one of these directioﬁs, the
spherical surfaces can be drawn in momentum space.-

go far in the discussion we have supposed that only
one of the g!' columns was small. This means that we have
been dealing with s bands for € =0 . For the 4 bands,
the case is different,for & of the g' columns would vanish
at once. | |

It is apparent from the form of the determinant thﬁt
the arguments presented for the case of a g 20 can be
repeated for the case of & u¥0 . The u band in which
we are interested arises from % =0 or x = ®. This

causes three columns of the u determinant to vanish. Suppose
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. now that TP = q ,Ia very smell quantity. Then the u

determinant 1s of the order q3

. The Tg(g'u)5gu' term
involves g~ , since one of the rows in u! £; replaced

by & Tu row for these terms. Such a minor will give
terms of the second ané third order in g and only the low-

est order need be considered. Slmilarly, the 7

term will
be of the first order In g and ell the others will be of

the zeroeth order. For this case, then, 8.5 is of the form

This shows that T2 4is of the order of q and only the
first four terms should be kept. To see what this iﬁplies,
let ug fix the direction of Xk and allow its magnitude,af N
alone to vary. (8.8) will then be of the form

(8.9) ag® + ba®( %) + cq( DT+ a(@®P=0 .

This is a cuble in (12). Bence, for a given value of ¢
there will, in general, be three distinct roots of ,Qa

each linesr in q . What this meahs'in the case of the p
bands is that there will be three surfzces in momentum space
for each value of ¢ . That is, the three p functions |
give rise to three bands.

From the two cases considered above we canr conclude
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that whenever a g function has zero derivative in its
radial function, or & u function zerc value, wé will get

a set of solutions for k = 0 . Fer energles slightly
diffe:ent from these, k will not be zero and we will get

as many surfaces in k. space as thers are spherical funétiens
for the given radlal function.

Thus for the s band we get one surface for energles
near to the energy for ¢ T 0. For the p functions we get
3 bands for « & azx; for the d's, 5 for § = 93 for the fts,
3 for ¢ oo . 8ince only three of the seven possible £
~ functions are used, we should not place much reliance om ;
these bands., As a matter of fact, even the § dt's are not
right. This i1s a conseguence of the fact that a field of
cublc symmetry, such as we have, will split the 4 functions
into 2 sets; & of the form Xy , and 2 of the form xg-yg .
The occurrence of five-fold degeneracy in our case for k = 0
is an indication of weakness in the boundary conditions.

The method of small Xk can be used guite conveniéntly
for the even functions of the 001 and 011 plaﬁes. Tt is not
necessary to expand the determinant. The form of the poly-
nomial is laergely determined by symmetry conditions and the

unknown coefficients can be evaluated from the known solutions

- ——— - P o S T

f;H. Bethe gives a discussion of "Term Separation in Crystals"
in the Ann. d. Phys. 3.2, 138 (1929). His discussion is not
for lsttice functions but for perturbed atomic levels.
However, for ® = 0 his conclusicns in regard to symmetry
and degeneracy are valid for lattice functions.
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in particular directions, To see how this is done, consider

p bands in the 001 plaz_ze. Let = q + I the energy be

2 Jp

expressed as & = ?b + AT vwhere ¥ =@ for T = £,
then, for small AS'E > G will be a2 linear function of the

~energy of the form q = « AT ., Since there are two p
functions in the even set, we expect to get a second orderl

expressicn Iin ¢ and fourth order in kx and k +« Bow-

ever, a large number of the possible terms in k:' and k.y
are excluded by the symmetry. In the first place, the problem
is slymmetrical for 'kx —_> -=kx » and hence no odd terms
in kxn are present. Also, the expression must be symmetrical
in kx and ky . The niost genera; expression satisfying

these réquirements is

2 2 4 4 2 '
q-a(k_§+k;y)q+b(lgx+ky)+c = 0 .
For brevity, we introduce the notation kﬁ =x , lg-]"‘ =y
- and get
qE-A(x+y)q+B(x2+y2) + Cxy =0 .

From seolutions 100a and 1004, we see that

z8 0

2 _ -
Thwe-xEg+ed) o -3

28
+ 9

For smell k and g these give

2 e .
¥ .8 _#° _ B3« -
X T = - Es0¢ Or 26q . |
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Since the quantity -%- q@ occurs contlinually in these ex-
’ F 4

pressions, we will denote it by ¢ .

2

tzg—qz%ﬂag .
® ® .

Hence, for k in the 100 direction,

. 28+¢@
{8.10) 6= - 5T x or - '2‘1“6" .

If we use the t notation, we have

2

(8.11) % + a(x + ¥t + b(x° + ¥°) + cxy = 0

For the 100 direction y = 0 and

tz + axt + b}:2 = 0 .

Since this must lead to the twe roois above,

£ 2 .. 28+0 1
2 E 25-!-0' 2
= 1t + ==—(4 8§ +5c')xt+ =0
QT
= _28+ 0

To evaiuate the coefficient ¢ we use the 110

selutions. These are 110a and 11Cb and they glve

e .88 70 = =k
(8015) t - 6 SU’ x or t - -gsx _. -
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For this direction (8.11) reduces to

2

t° + 2axt + (2b -t'c)x2 = Q .

Equating this to the equation derived from (8.13) we have

(t+§_.§_émx)(t+§3§x)

_ . 1 89 + 2 _
=t +6.“,(88+ 100 )xt + - R x“ =0

or

- _88 + 7«
The fact that the value of "a" comes out the same for béth
directions is a check on the correctness of our procedure.

Solving for ¢ , we get

oz 48 t 3¢ i
. 12%%¢c
Vhen the values of 2 , b, and ¢ are known
nuherically, it is =& straightférward problem to compute
2 serles of values of x and y for a given energy and
make a plot of the corresponding kx ky contours. TFor
€ =030, =00 and Ok = 0.470. The other numerical

values needed are

0.181 0.274 7 .46 10.8& 5.338
From these, the contours for A T = - 0.085 are shown.

(Plate 1.)
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01l Plane

As for the 100 plane, there are two p functions
in the even set for this plane. We expect then to get a
quadratic in t . In this plane k = kx(loo) + u{011)
and the symmetry requires that the guadratic be unchanged
_ L2
.by kx 4 'kx and u—% -u ., If we denocte kK,

x and u® by v , the allowed quadretic is

by

(8.14)  t° 4 (ax + BVt + (Xx2 +/sv2 +yxv) =0 .

For the 100 directiocn, v = 0 , the roots for t are found
from 100a and 100d (as for the same line in the 00l plané).

These give
- _28+0 . Y
t= - X3 X and < Tg ¥
or
t=-r x ‘ ané - s;x  for brevity.
For the Cll line, x =0 , we find
- (8% + 70\ _ _1
t = = 55 ¢ yvo= - T,V and £v 5oV

For the 111 directiocn, v = x, we find
- 2(e+dy I

We can determine the five constants of (8.14) from |
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the six expressions given above. We fiﬁd

1@0 a=r +s s o = rys,
011 b=1‘2+52 o /3:;[:232
1i1 a+b=r5+53 ,0‘764»( = rgs.

Hence ¥ = rgsg - rysy - T8, . ‘The results can be
checked frpm the a and' b eguations. We should have

r5 + 55 = rl + sl + r2 + 52 -

This eguation is readily found to be fulfilled. The numer-
ical values necessary to compute the constants of (8.14)

were given for the 001 plane.

The contour for DT = - 0.085 are shown in

Plate 1,

For the odd functions of the two planes considered
above, we have exact solutions, We can readily get the ap-

proximatién for k¥ —» 0 by making approximations in the

expressions. The expression 001o is

| o2 12,2
[ﬁm*%s@'*%)] {T011+§S(§+$)]=

|

-3

- Ol
® |
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2 e
For k—> O we have T% =5xk L, 1

101 © X
%'=-q 8 small quantity. Making these substitutions we
find (neglscting powers of higher than the first) |

2
5,2 o 8vlely L 1leBl _1c¢21 _ 121 1lce21
é(kx+ky)(25q>)+45 q’2+28 21=7%8 L-p-z_gs P
or

4 102 . o2y - 102 0 18 = n
——“_Bq+2s(kx+ky) t+.28(kx+ky) 0 .

(8.15)
-Hence, the contours are circles. These touch the even
funetion contours at the 100 direction where k? =0,

As a matter of fact, we could have drawn the con-
tours without using 00lo at 211, 8Since we know that there
is iny.ene p function in the 001 plane, the expression
for t must be lineer in +t ard gquadratic in k . From |
the symmeiry it must be a circle. From the solutions along
the 100 line we know that there is degeneracy in the »p
band between the odd and even functions for 100d. This
would lead to the contour obtained above without calculation.

Applying the methods used above to the odds of the

011 plane, we get

: <L 2y =
(8.18) t+25(kx+u) o .

This 1s an ellipse, cutting the even function contours at
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100 and 111, as is required by the degeneracy in the p

bands.

The Coptours

Plate 1 shows the contours drawn for the two planes.
An eitrapolaticn from them to arbitrary direcﬁions of k
space are alén shown. For a given energy, the allowed values
of k fall on a surface having three shéatsg One ie nearly

spberiecal, I. Another, II, has the same traces as a spiere

in the coordinate planes, but is plucked out into a conicsl
cusy which, with the cusr of III, forms a cone with the 111 -
line as axis. | |
The contour lines represent the intersecticn with
the surface of 11l planes and a set of slx planes passing

through the 111 lire and set 30" aparte.

It should be possible to calculate the contours

for arbitrary directions of small k by extending the
above process, For arblitrary directions, the expression

wlll be cublec in t and sixth order in k . The expression

will be of the form

(8.17) t* +At¥P + Bt +C=0 .




- 87 -

A, B, and C are polynomials of the second, fourth, an
sixth degrees in k . Due to the cublc symmetry, these
must be of a particular form. The most general forms are

easily seen to be

2

- 2 2
A= alk + ky + k)

B = by +ig) +8 (< + gk + kg
€.,6,.6 40,2, 2 4, 2.2
= c(ki+k +k,) + Ye2alad) + Weid)

+ kg(k§+k§)}+ d(kik?kz) }

9]
I

There are gusp six constants here and there are nine knowm
solutions for the three directions 100, 011, =nd 111.

From these, it should be poséible to determine the values
of the constants and have three extra conditions available
for a check, The solutlons for k would be cérried cut

By choosing the direction of k and sclving equation (8.17)
which would then be a cubic in |k|® .




- 88 -

IX.

METHODS OF CONSTRUCTING CONTOQURS
FOR THE FACE-CENTERED LATTICE

So far we have diséussed lines and planes in momen-
- tum space. What we ultimately desire is the relationsbip
of energy to momentum for all values of momentum. Due to
the cubic symmetry 1n momentum space, all representative
momenta are contained in a segment be ing one forty-eighth
of the first Brillouin zone. There seems at present no
method of obtaining solutions at interior points of the
segment. However, we can extrapolate with some confidence
to Interior points from our informatior on the surface,

The Plate 7 shows a portion of the body-centered
k lattice and the fundamental segment. The latter is
outlined with the heavy solid and dotted lines. It is
bounded by 100 and 110 planes and z plane bisecting the
liﬁe between nearest lattice points, Our first problem will

then be to calculate the conditions on the boundary surfaces.

Cdd Set
The Slater conditions give the expression
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P . 9
(st + 38+ B [ - 150+ ] - s -

for the odd functions in the 001 plane. For a given value
of the energy, the coefficlents involving s %y and 9
are fixed. It is then possible to compﬁte the allowed
values of TlOl’ and TOll and the corresponding values
of kx and ky , thus getting a curve in the kxky plane.
Values of @ , x, s , and ¢ used for these calculations
are given in Table III. The corresponding contours in Xk

spacé are shown in Plate 4.

Even Set
For these we ha#g the soluticns for small Xk and
the lines 100, 110, znd I. The results of the calculations

for these are shown in Plates 1, 2 and 3.

Correlations

As we have seen from general conslderations, there
are three p bands. That is, for a given energy there
will in general be three surfaces in k space for which
soiutions of the Slater conditions can be obtained. From
the informatioﬁ at small k we can give these surfaces
numbers as shown in Plate 1. For certain energles, one of
these surfaces gives the traces In the OOl plane shown in

Plate 5 odd set., We do not know the traces of the other
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two but anly'their intercepts along the lines of Plates
£ and 3. However, we know from symmetry conditions that
the traces must be perpendicular to these lines in the
001 plane. We also know how these traces behave for small
k . Using this information for a start, we can follow the
iﬁtercepté along in the plane and sketch in the curves
‘shown in Plate 5, even set. |

It is to be noted that along the dotted lines in
Plate 5 the energies are tine same. This fact is important
in. the later work.

011 Plane

The 0odd functions can agsin be andled separately
and give the contours shomm in Plate 6 for the 011 plane.

For the even functions, the situation is somewhat
more complicated than in 001, The intercepts for the even
functions are known for the solutions 110a, 110b, Plate Zj
111a, 111b, Plate 33 IIa and IIIa, Plate 4.

We note that among all the even solutions there
is only one crossover of the energy contours. This is
at the point where 110s and 110b cross. In order to have
the contours move continuously with changes in energy, it

is necessary to use a mixture of 110a and 110b. This can
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be done in only one way, as shown in the adjzcent figure,

The contours drawn from these wlues are shown on Plate 8.

The 11) Plane

The 111 line normal to this plane at 2(111) 1s
a 30° rotation reflection axis. (Plate 7.) That is, rota-
tion through 30° about the 111 line and reflection in the
piane brings the lattice back to coincidence with itself.
Sincﬁzthe reflsction does ndt alter the contours in the
plané, these contours must have sixfold symmetry. The
further'symmetry introduced by the reflection planes 110
and 100 of the latiice show that the contours must have

the éymmetry of a regular hexagon. The elementary reglon
of thils hexagon is a2 60 - 30 triangle of whieh the hypotenuse
is the line IV. The cther two sides lie in 011 and 001
planes and the connection between energy and momentum along
them can be interpolated from contours in those planes.
The symmetry of the regular hexagon requires that the con-
tours be perpendicular to the hypotenuse znd the lﬁnger
side of the 60 - 30 triangle. These conditions should be
sufficient to enable fairly accurate contours to be drawn
on this face.

The calculations outlined above have not beer car-
ried out in this work. The line IV was developed after

the space contours were already drawn and it did not appear
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worth while to try teo makse them more accurate. Thé above
discussion 1s given in the interests of completeness in

regard to solutions for the face-centered lattice.

Space Correlstions

From the definitions for small k , we see that
surface I 1s the innermost surface in Xk spacé for a
given energy. This can be restated by saying that for a
gilven k , surféce I has the lowest energy. Surfaces II
and III have the next lowest and highest energies respect-
ively. (It is noticeable in Plates 2, 3 and 4 that the
_trend is for € to decrease ss | kl increases) Utili-
zing this definition, we see that the traces of I and II
are mixed between odd and even seté of Plate &, ‘the traces
of surface I being obtained from the lower energy regions
of the two sets, II from the higher energy regioms.

A similar situztion is true for surfaces II and
III in the oiI plane, It is difficult to estimate the
lines of degeneracy on these, but the locatlon is indicated
approximately and the choice of which contour belongs to
each set 1s shown.

When the contours are known in the boundary planes
of the fundamental segment, Plate 7 , the surface In k

space can be drawn. Since the 100 and 110 plsnes are .
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reflection planes of the lattice the egual energy surfzces must be
normal to them. This puts fairly stringent conditions on the
behavior of the surface near the edges of the cell.

On Plate 7 is another view of the Xk spsce. The
fundamental segment 1s indicated in heavy lines. Solid
lines are thosge for which solutions are known. The other
flgures of Plates 7 and B show the surfaces as drawn for
the same vliew. To ald visualizatidn, they have been contin-
ued by repetition ¢f the fundamental segment twenty four

times.
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X
Na-Cl CUBE-CUBE JOINING

As was discussed in Section IV, the simplest
way of setting up houndary conditions which involve both
Na and Cl functions is to disregerd the C1-Cl midpoints
and retaln only the Na-Cl midpoints, If the wave function
around the Cl is g + iu and g, + iul around the Na,

Ithen the boundé.ry gconditions for the 100 midpoint are

iM R
e rtu= o™ O (g ]
g! + iut = ei)" OR],OO{_gi +- iu]’} .
M Ryno = (24/2)k, (a/2) = =k, .

The wave functions which we shall use are

Ci Z, & -0, (?2-22)13,::“,?“,2”

Ne = 8, (x*-39Dp , (F-25HD ,x , ¥y , zP .

Since the surface harmonics are evaluated at the same radius

in every case, we are Justiflied in leaving out the factor

»# . We shall assume that F =Tl=A=s=p=0p=1

at the midpolnts, and that the derivatives are o , x, 5,
5, p, and d respectively. (It must be noted that the
values of O , ¥ , & used in this sectlon are evaluated

at the Na-Cl radius, rather than at the C1-Cl radius.)
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The methods employed in obta;ning solutions for
these boundary conditions are the same as for the C1-C1
type. We choose such values for k that the functions can
be split into smaller sets in accordance with their symmetry
types.

001 Plane
For this plane we can spliit our functions into

even and odd for 2 —p -2 .,

0dd Set of OCl Plane

There is only one odd function from each atom,

the entire odd set being

cz 1T ., N zP .

These functions vanish for the 100 and 010 directioms and,
hence, the boundary conditions on those faces are satisfled

trivially., For the 001 face, ¥ :Ryy; = C and we have

- i N
1 Bp

ic

i

1 Cx
and the determinantal equation 1is
‘.’C+p=G -

When the energy is correct to satisfy this equation, there
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will be a solution for all values of k in the 001 plane.
This 1s 2 rather zggrsvated form of zero width band znd
indicates that the'boundary conditions are ncne too satis-
factory.

It is worth while showing, however, that this con-
dition gives roughly the correct energy for the case of large
separation where the band is very nsrrow anyway. At large
radli, the eigenfunctions for any glven atomic level are ex-
ponentially'decaying functlons of the radius. For these,
it 1s clear that a¥{r)/dr {= x for our Cl functions) will
" be negative. If the energy is shifted slightly from the
eigenwert, then the function becomes 2 mixture of positive
and negative exponentials, and, since the positive will
usually deminate, x will be positive. In the immediate
neighborhood of the eigenwert, however, &« will run through
all negative values from O te - w. The range of energy
values for which x 1s negative form a "p band." For
large separatlon, then, these bands are very narrow, and,
since # + p = 0 can be satisfied only for # = - p , the
eriergy must be in either the Cl or the Xa p band. |

Tt was & line of peasoning similar to this which
" led us to conclude that even for the Cl-Cl jolning conditions
the zero width KNa bonds would be approximstely corrsct for

large separation or X-ray levels. (Section IV.)
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Even Set of 001 Plane

The remaining ten of the twelve functions are
even in the 001 plane. It is obviously not worth while to
attempt to get a general solution for the plane. Consequent-

ly, we shall consider only specizl directions.

100 Directio

For k& = {kx, 0, 0) we can classify our functions

according to thelr evenness or oddness in y . This gives

"two sets:
0dd 1in yi cy, yT11 ; Ra, 7P
Even In y: the remaining elght functions,

The odd in y set is formally identical with
the odd in 2z set. It gives x + ¢ = 0 as the condition
for a zerc width band in the 100 direction.

Tie even functlon set satisfies elight conditions:
four on the 010 face {equivalent to 001 for this symmetry)
which do not involve X , and four on the 100 face with do.

It is possible to eliminate four of the cosefficients by _
using the 010 face and set up and expand the resulting fcurth
order determinant for the 100 face. The resulting axpressioﬁ
1s very involved and complicated. 1In view of.the unsatisfac-

tory behavior of the zero width bands, the effort necessary
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in order to calculate the eighth order band 4id not seem

worth while,

410 DPirection

The 0dd Iin 2z set has aslready been worked out .

for 211 directions in the 001 plane. The sven functlcns

may be split into two sets, according to their symmetry for

interchange of x and ¥y .
The odd set for intercheznge of x and y is

cl Ot(xg - }'E)A s /6 {x - :f}Tf

Na (%% - vID , B(x - y)P )

These functions vanish on the 001 face and satisfy the bound-

ary conditions there trivially. Due to the symmetry, we

need consider only one of the 100 or 010 faces. For the
100 face,

1 B

e 100 = cos « kx + 1 sin =« kx =¢+ 1is .

The boundary conditlions then give

{¢ + 1s){4a - 1iR)

il

R+ ifB

x O+ i/a;t;' = (¢ + is){-Ad + iBp)

or

e ——— e
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= cA + B
B = sh - cB
*® &= _carh - B
/Bx = - 8dA + cpB ' .

The resultant determinant is

1 8] - -8
0 1 -8 c
) | Q cd sp
0 ® sd -CP

When this is expanded, we get

52(::'9 +Hd) + cg(_dfe =p8) +dp+ b =0.

This expression can be written in other forms by meking use
of the relstion s° + c’? = 1 . The one used for caleulation

was

S = - '§'r___a_‘_r}-§§_i-__\
sinf, = - Rt S’i ,

It was found upon calculation thet the right-band side was
practically & linear function of the energy when its value
lay between O and +1 . Her_ace, the energy was a c;osine
function of ch .

The even functions for the =x-y interchange must

gatisfy six conditions. As for the even funciions of the
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100 1ine, the lsbor necessary to obtain 2 solution did not
appear to be justified by the accuracy of the cube-cube

approximation.

013 Plane

For this plsne, the sspsration into cdd and even
function for y and 2z Iinterchenge can be made. The odd

set is

c1 xi® - DD, P 211

s Afy® - 2°)D , B(y - 2)P .

These functions take on zero value on the 100 face. The
010 and 001 faces are equivalent,and'for elther we will
plainly get the same conditions as we found for the 110
1ine in the 001 plane. 1f we express kK as {kx, U, B,

we will get the condltion

2 (p+xi(d + &
SERER T Ty - H%%gﬁ:ﬁf%

for the existence of & solution for the odd set. We see
that there is no relsticn between energy and momentum in the

100 dilrectlon.

The Even Functions of the 01l Plene

1+ is too difficult te attempt a genersl solutlon
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for these. Of the three simple lines in the 01T plane, the
106Q znd 011 types have already been treated, Only the 111l

1line remsins,

The 111 line k=uuu 1is a three-fold axis
in k space, and has a2 symmeiry group isomorphic with the
permutation group for three cobjects. This group has two

one-dimensional representations and one two-3dimensional rep-

- resentation. For the trivial one-dimensional répresentation,

the function will be
3] _o(z,/e(x+y+z)ﬂ
Na AS, B{x + y + z)P .

The odd functiens of the 011 plane clearly do not form a

one-dimensionazl representation {rotation through 120° certain-

' 1y gives a linearly independent set of functions). Hence,

the remaining four functions
Cl (23(2 - }’d - zE)A » (2;{ -y = z}ﬂ
Na (2% - y2 - 25D , (ex -y - z)P

must alse belong to the two-dimensional representation, and

the condition along this line must be glven by .

A e aaeaimrd
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sin®su = - %—f"}{_““ 2 f:\ .

Wé can get the condition for the one-dimensional
representation without calculatien from the above expression.
Since only one interface need be considered for the 111 di-
rection, the only difference between the conditions arising
from the two-.and cne-dimensional representations will be

that the 4 functions are replsced by & functions. Hence,
the result will be

7 - + xlis + @)
sin“su = ~ %%}:-;%{;“ijig .

oncernin he Parameters

In wmaking calculstions with the above formmli,

it is necésSary to usé the same energy for the wave functions
of both atoms. The weve funciions themselves are solutions
of the wave equation in the field of & Cl neutral atom (ion
less a hole of one electron) and a Na+ ion. Let the positive
energy parameters of these salutioﬁs be E: (dencted by

T in the work with C1-C1) and &  , respectively. If the
Madelung potentisl is 0.68, then the energy in the lattice
will be . |
€

n T 0.c6 .

S'e-:ec—oeesﬂ'

Due, however, to the hole on the Cl, which should follow the
electron around even when it goes onto the Na, there should

be a lowering of the Ha potentiazl. If we suppose that this
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i

hole distributes itself soc as to leave, on the average, a
defect of one-sixth electron on each of the six surrounding
Cl's, then the decrease in Na potential will be 2/5.30 = 0.38.
This gives the relation E} ='E£ + 0.28 . The theory of
this type of hole is not well-founded, and it is interesting
to see what effect will be produced by a chenge in asszumptions
regarding it. The calculations were such that the relstion~
ship gb_ = Eﬁ + 0.88 , correspending to a hole potentilal

of only 0.08, could easily be investigated. For the C1~

Sp band, this change did not make much differencej the band
shifpéd by only about +0.06 for this shift of +0.30 in the

Na potentisl. The reason for this smaller shift is that

Cl atomic bands are not widened as much as the Na bands of
approximately the same eigenwert. Also, the energies in
gquestion actually lie within the €1 band and outside of the

Na bands. Both of these circumstances tend to make « &
mach mere sensitive function of Tt than s, pord .

Hence, a fairiy large shift in the Nz potentisl cén be com-

pensated by a much smsller one in €5 .

Summary
The cube-cube joining conditions are, on the whole,
unsatisfactery. They give riée t¢ absurdly simple conditions,
or else rather cémplicated cnes. S0 far as giving sensible
results for the Cl1~ Ep_banﬂ, they are considerably inferior
to the Ci-Cl joining, when compared with the double Joining
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conditions discussed in the next section. The results of
calculations for the cube-cube formuli are shown on Plate 2.
They will be discussed in comparison with the other methods
in Section XII,
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XI.

C1-Cl-Ng JOINING

The two types of Joining conditions discussed in
the preceding sections are not satisfactory on the basis of
their own merits. The C1-Cl case does not mske sufficient
allowance for the Na functions and the Na-Cl is too prolific
of zero width bands. A better method is te use both setis
of boundary condliions simultanecusly. This leads to twenty-
four boundary conditions and, consequently, 1t is not feasilble
to get solutlons over as wide a range In k space as for
either of the two cases., In spite of this, however, we can
get enough solutions for this case to sllow 2 comparison to

be made between it and the other two.

x =

For ¥ = 0 the lattice funetion is perlodic. _Since
the factor ei“tR =1, a worthy function will consist entire-
1y of even or odd parts. Since we ars dealing with p funec-
tions, we are interested in the odd type. There are three

equivalent C1 p functions:

/o1, @I, @ T .

These belong to a certain symmetry type as regards cuble

crystals (they form a basis for the representatlion "
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of ths octahedral group). The next funetions of the same

type are
(;;5_ %xrg)/ran y ° - %s*rz)/r5 P , °- %zrg)/r‘"’db.

If we consider the x type of function, we see
_thé_t it takes the same value on the 110, 101, 170, and 10T
faces and vanishes on the 011 and 011 C1-Cl interfaces and
onn the 010 and 001l Na-Cl interfaces. Hence, we shall use
functions around the Na which vanish on 010 and 001l. This
leads to the same type of symmetry around both Na and C1
atoms. (This result can be proved more generally by group
thoery.)

For tals type of symmetry, there are only three
boundafy.conditions: two across the Na-Cl 100 face and one
across the 110 type of Ci-Cl face. The condition on ¢!

is automatically satisfied on the latter, since
gt +Tu' =0+ 0ut =90 .

_Theré sre four ways of choosing the functions: 3 around Cl,
O around Naj; 2 - 13 1 - 23 O - 3. Of these, 3 - O and

0 « 3 can be disregarded. 1 -~ 2 1is analogous to the

Cl-C1 éase, the energy is fixed by the Cl-C1l boundary con~

dition alone and the Ns functions sre wmerely buffers. 2 -1

contains the properties which we seek, and makes the solu-
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tion depend on both atoms,

in carrying out the calculations, we shall assume.
that the C1 radial functions ére'unity et the C1i-Cl midpoint'
and have derivative & and ¢ . At the Na-Cl midpoint,
their vaiues will be x, and ¢, =nd their derivatives

¢
%, and ¢, . The N functions will be unity at the Na-Cl
midpoint smd mve derivatives s, p, 4, f, ete.

In carrying out the solutions, it is most conven-
ient to satisfy the Clel'conditions; thuas eliminating one
constant, and then nse the resultant function to satisfy the

Ba-C1l conditions, Let the funcitions be

1 W &EHTT, 3548 B - Exr° @
' X
Na C(r)-P
110 glves
A-B=20 or B=A »

- 100 then givés for the conditions

. 1
- g + in = 1(g, - im;) and  g! + im! = 1(-—gi + 1u,)

the equations
ME s+ AR 9
AT B, + AE éc = Cp .

1}
'
aQ




E;~Ent 0.28\

<P

0 L] » /
_ Tkt |
Te+4@
-1
-L0 -0.5
&
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This gives the condition
b= - ® +_4q3c ,
%, + 4@0 .

When the right and left sides of this equation are plotted
as functions of E; {see end of last section for a discus-
sion of €y in relation to the €'s of the atoms), it is
found that the right side is very much more sensitive as a
funetion of E} than the left. This means that a variation

in the assumption about the poiential of the electron on the

Na atom 12 even less Important here than for the Ha-Cl‘join.

k=190

This point corresponds to half periodieity, that is
the factor e-" % = *1 , rather than just +1 . Since this
factor is real, we agaln use odd functions in both cells.
If we use functions of the (x/r) symmetry type, the number
of boundary conditions and the symmetry is Just the same as
for Xk = 000. The 110 face now gives no condition on ¥ ,
but one on ¥! instead (T4, = tan%(kx + ky) = e )3 hence,

Ak - Be =0 B=(x/o)A .

The conditions on 100 are the same except for a factor -1 .
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INE) 8, + AdJ2 (x/@)@c

= 4+
ASS &c + A4S (x/¢)¢c = «Cp .
And
- + »
)= - ® 4(«/@)%_ )
%, + 4(2/9)9,
k = k_00

In the last paragraph, we considered the (x/r)
type function. For the (z/r) type we can get a solution for
all values of k in the 100 direction. The (z/r) function
satisfies the same conditions for k = 0 as the (x/r) and
was not consldered separately there.

The (2/r) type has a nodsl plane throughk the
points 100, 010, 110, etc. Hence, there will be conditions
on it for the 001, 011l and 101 faces only. This gives five

conditions
01l one condition u =20
. ) _ N _
101 two conditions ;nvolvi;g ’I‘101 = tan§ kx =T
001 two conditions not invelving T.

¥e must use at least three Cl functions to satisfy the Cl
conditions; this gives only the possibilities 3 - 2 and
4 -1, 3-21s esSentially the Cl-Cl case again, so we

are reduced to ¢4 - 2,
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The functions chosen to satisfy the conditions

are

c1 1{&/5@/1-)” + B 5/8(2° - %zrg)/r54>

+ CJ8 z(x2 - y‘?)/rada} + E Bxy/rgﬁ =

i(AETT+ BL® + cud) + ENA

Na 6(z/r)P : .

The values of the surface harmonics on the various faces are

K L M N
011 1 -1 -1 0 0
101 1 -1 1 1 T
001 2 'NE) 0 0 e’ =1

We eliminate A Irom the 0ll condition, which is
A-B-C=2¢0 or A=B+C .

The conditions on 101 zsre then

i

~7{(E) + A-B+ C
-TE + 2C =0

ES +T[B(a' =--<p).+0(r:+q))1 =0 .

cn 001 we find

- - o T or oem e e m m R —
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lB(a, + 29,) + c«c] = +1{ -¢]

JE[B(EC + 4p,) + C&c] +1{cp} ,

When the determinent of the coefficients of B, C; E and G

is set up and expanded, we obtzin

s{p(x a0 ) + (& +49))]
¢[P(“G+2(§+1)Qc)'§c+2(%+1)éc] .

This formula can be checked ageinst kX = 0 when T = O,.
It hag also been checked by working out independently the
solution for k=100 or T = @

Since the z/r and y/r types are eguivalent
for propagation in the 100 direction, the (y/r) . type
will give another besnd with the same solution.

Values plotted from this formula are shown in

Plate 9 for the two assumptions in regard to the Na potentisl,

=1
k= (11

For this value of k , Ti10 = Tcll = TlOl = 00
and Tli@ = TOIT = TldT.= C. The factor-

R
ei =1 for the 100, 010 and 001 Na-Cl conditions. This

shows that we cazn use odd functiocns arocund the Cl snd even

functions around the Na. We already know what functions to
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use around the C1 foer k = 0 . We must, however, choose
~the right linear combinations for propagation in the 111

direction. These prove to be terms of three types

r; (x + ¥y + Z)
P (v - 2) or  (y° - 2%
b (2x -~ v - 2) (2x2 - yg - zg) .

The numbers correspond to the representations of the symmetiry
group of the 111 axis to which they belong.

o The type r; tekes on the same value on all
three of the faces about & Na, and suggests using an s
there, The E; type venishes on all the 01T type faces,
and 1g subject only to the condition ut' = 0 on the 110
faces. It satisfies two conditions on the 100 faces. Hence,

2 satlisfactory set of funetions is
3,.8,._3 2
e + + - 2 §+§£+ ):
C1 Aﬁ-—x——x z”, B&fg(-——x Iz 33/5( 2. )Cb

r

Na cC 8 »

The 110 face requires

i
3] g
Qi

2Ax - 4B = 0 or B

The 100 face regquires
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® =
N2A , + 46@0 =
L] “. -
NETY £, + 43.1)0 = -Cs

or
#, + 4(x/9)0,
®, + 4(x/9)9, )

8 = -

The functions of r; tyve give one more condi-
tion since they do not vanish on the 011 +type faces.
This requires the use of one more function., For the "a®
set, which are odd for interchange of y and 2z , we use

the functions

o 3 3 | 2
L AVE ix§5111'+ B 5-J§'£L=ﬂ;:§§§iézil£-!qo +
' r

ofE 2x(22-Y2) + z(xQ_ 2} - y( 2_ 2)
5
r

= kTT+BLY + cu P

2 £
Na Eii;ﬁ:-é_l D = END .

The choice of the surface harmonics was such that they
2 all transform in the same way from one equlivalent face to
EE another In regard to propagetion in the 111 direction. This

may be seen from the table of values.
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4 L M N
011 0 0
101 -1 B
011 1 1 -3
011 2 2 2
10T 11 1
170 1 a1 1
100 0 0 0 0
010 Np N 0 1
001 NN - S |

It is seen that fitting at 011, 10T and 010 will cause
all the other faces to fit also.

The condition on 101 is u = O .
A+B+C=20Q .

On Cll, it is wut =0
Ax + Bp - 3Cp = 0 ,

Therefore

- This gives for the condition on 010
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I
)

Jﬁg(xc + (g + 5)¢c>

"Ed : -

il

VEA(, + (£ + B)9,)

And, finally
- # v
%, ¥ (m + 5)?9

x .
%, + ($ + 3o,

d = -~

The values cbtzined for Xk = %(111) are shown on Plste 9.
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XIT,

SUMMARY OF THE WORK ON THE C1~ 3p BAND
REMARKS ABOUT TO ENERG

Calculations have been carried out for the €1~
Sp band on the basis of three different sets of boundary
conditions: Ci-Cl, Na-Cl, and Cl-Cl-Na. The energy versus
k curves for these are shown on Plate §. We see from these
that ths leCI iz a much better approximation to the Cl-Cl-Na

- than is the Na-Cl, However, the Na-Cl energy values cover
roughly the same range as the other two.

This result is not as trivial as might.appaar at
first glance. For the Na-Cl ioining, the Cl functions are
evaluated at the Na-Cl radius rather than the C1-Cl radius.
At this radius the Cl” 3p band (defined as the energy values
for which ¥ /x, < 0) is about three times ss wide as for
the Ci~Cl radius. Ye can see, roughly, that the Ha-Cl band
edges, which come at -&c/xc = s, p, and d of the Na functions,
will lie in the central part of the range. This is a con-
seqguence nf the fact that the 8; D, and 4 values gre of the
order of +1. The values of ﬁc/“c renge from 0 to . o
wilth 41 near the middle of the range. However, it is |
gratifying and, on the whole, somewhat surprising that the
Ha-Cl band actuslly lies within the Cl-Cl-Na band.

S¢ farlas the detalled structure is concerned, there

i1s no greast resemblance between the Na-Cl and the other two.
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For this reason, it appears doubtful if gz great amount of
faith can be placed in the structure of any of the bands.
On the other hand, the marked similarity between the Cl-Cl
and Cl-Cl-Na bands indicates that they may be falrly good.
It would not be wire, however, to assert a definite opinion
on thils point.

The overlapping of the energy ranges on the three
schemes does héve & definite interpretation. We should cer-
tainly expect that an exact solution of the one eleetren
Schr8dinger equation in the field used would give sn energy
band in very nesarly the same place.

One thing we should expect te depend upon the C1™
3p band 1s the binding energy of the lattice. In the case
of a monovalént metal, the heat of formatiocn and the com-
pressibility are dependent upon the behavior of the band for
the valence electron. As the lattice is squeezed togethar,
the band widens. At first it spreads equally to both sides
of the free atom energy level. Since the band is only halfl
filled, the electroms go intc the lower half and the total
gnergy decreases. When the spacing is made too cloge;, even
the bottom of the band starts to rise and the ensrgy increases.
" The minimum in the energy versus lattice sonstant curve glves
the equilibriunm spacing znd the binding energy. The curvature
at the minimum gives the gompregsibllity.

The situstion is gulte different for the valencq

electrons of the C1~ ion. These form & filled band, and for
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large lettice spacing, the spreading of the band does not
affect their mesn energy. Thus, to begin with the entire
change in energy is due to the Madelung energy. This causes
the total energy to decresse ss -1/§ . When the.lattice
is squeezed very close together, the band begins to widen
more at the top than st the bottom and repulsive forces set
in and held the ions apart. A rough idea of the total
energy can bhe cobiained by taking the avérage of the top and
bottom of the band &s the averzge energy of the band. If
this is multiplied by six; for the =ix electrons, and sdded
to the Madelung energy, the resultant total energy per
molecule has a shallow minimum within 8% of the observed lat-
tice spacing. However, the corresponding binding ensergy is
negative. That 13, ocur calculztlions indicate that the lzt-
tice 1s unstéble.

It is not difficult to find the resson for this sb-
surd result. In section IV, the calculatlion of the potentisl
for the Cl ions was discussed. t seemed ressonable to re-
normalize Hartree's potentizls so as te include all the
electrons in a certain amount of space about & CL nucleus,
This change in normelization sufficlently affected the field
as to cause sn apprecizlle diffeience between Hartreets
energy perameters and curs. In fact, the center of oﬁr band
is sbout 0,15 At.U. higher then Rartree's levei. gince the
Madelung energy per molecule is only 0.€€ At.U., the excess

energy at the minimum is € x 0,15 - 0.66 = 0,24, 1In rsgard
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to this diffieulty, NaCl 1s very different from the alkali _
metals, For them the potentizl on an electron is nearly
independent of the lattice spacing and calculation of wave
functions for one field is all that is necessary. For the
Cl ionsg this is far from ftrus, As the lattice is squeezed
together, the change in the charge distribution affects the
field of the valence electrons guite appreciebly. Hence,
for various radii it is necessary to carry out self-consistent
field celculations for the wave functions.® If the total
energy is then plotted as a function of & , the minimum
should 1ndi§ate the lattlice spacing and binding energy.

Even il the above process is carried out, we canuot
expect as good results as for the alksll metals., TFor the
outer electrons of the C1™ ion, the Hartree approximation
iz not nearly as goeod as for the cuter électrons of.sediumo
(Fcr scodium, a field can be chesen which gives gcéd agreement
with the spectrzl terms.) Bence, there will be a considersble
error in caleulating the zero of energy for infinitely sep-
arated ions, If this zerc error varies as the lattice 13 s
'squeezed together, it may well so mask the repulsive effect

of the bsnd wldening as to obfuscate the rssulis.

T T R G A s PR e T s e SR AT T T et B s Bk e W W ST BT ot W e e A R A A e e M A . A e TR e

* geif-consistent field calculstions for LiIF have been
carried out by Ewing and Seitz. Abstract in Phys. Rev. 48,
639 (19%6). An article by them is expected in the near future.
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XII1I.

CONCERNING EXCITATION

Since Section II, we have been entirely .concerned
with the mechanics of caleulating one electron wave functions,
The next question is what to do with them when we get them,
Since the bands in NaCl are filled, we cannot use them for
the calculnticn of & non-existent c&nductivity.

However, they can be used to calculate the energy

of elgetronic exeitation in the lattice, and this should be
very closely related to phenomenz connected with dispersion
and absorption of light.

For a free atom we consider the light as producing
a probability of finding the atem in an excited state. This
probability and, hence, the interaction of the light and
the atom depends on the frequency ‘of the light, & situstion
which results in the Kramers Heisenberg formula for the phen-
omenon of dispersidn.. When the frequency of the light is
very nearly one of the natural frequencies of the atom, this
probabliity of excitation becomes very large. ‘There is then
a large amount of light scattered by the atom and consider-
'able probability of transfer of energy to colliding atoms
in the case of a gas or to lattice vibrations for a solid.

-u—ﬂa—u--nu‘u_—-...—.-“..-._- T A A s i W M L)y A ], W e - i Sl S D

J, C. Slater and N. B, Frank "Introduction to Theoretieal
Physics," page 549,
G. Wentzel, Handbuch der Physik XXIV, 779.
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By analogy with the case of the free atoms, we are
led to investigate the probability of excitation of the crystal
by 1lght waves. The interaction between a light wave whose

vector potentisl is. A(x) and an electron is

2
= & —8_ ;2 =
B, = == p+A + A
1 m¢ o c2

For a plane wave, A 1s of the form f eisar ,Iwhere T

1s a polar;zation vector. The perturbation Hl 1s eapable
of causiné transitions of the electron from one.lattice fuﬁcu
tion to_anothero There is a2 selection rule for these transl-

tiongs. If the latiice functions zre

i“‘B“ '
¥ = 2{: e L and
« _
yro= X o1¥ Ra , ‘then
o «
H ,.,,al = -_i:s

For vislble and ultraviolet light, k will be mu.éh smaller
tha.n. o . ® is of the order of 1/§ , the reciprocal
vector for the lattice, while k 1s of the order of. 1/3
the wavelength of the light. Hence, this selection rule is

practic¢ally equivalent to

.y

and the latter will be used for calculating energy differsnces

T D o e R .-no:-m—_.._.-——n:. o 3 S e S S e Y ke T T M S i 0 e e e T S M el il ke T 3 S0 20 Sk e S

*For & thorough dlscussion of the interaction of electrons
snd radlation, see CG. Brelt, Rev. HMod. Phys. 4, 504 {1932).
See also, B. Fermi, Rev. ¥od. Phys. 4, 87 ( a9z2) .
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between the lattice functions.

The interaction of the light with the crystal can
~ then be thought of as the sum of the interactions with each
of the electrons. We suppose that in the lowest state there
1s one electron in each of the lattice functions for the
filled bands. Under the influence of the light a given elec-
tron has a probability of ngping to vacant statses in higher
bands. Due to this probability, there will be a current in
- the lattice. The value of this current and its influence on
Fhe light éan be calculated ard interpreted in terms of an
index of refraction. This method hasg been carried out by
Wilson.® There is an important objection to his method, He
does not specifically consider the interaction between the
electrons. In considering any one eleciron, he replaces gll
the other electrsns and the ions by a periodic potentizl
field. This field is taken to be the same for all the electrons
and his one electron wave functions are sclutions of Schr¥dinger's
eqﬁation for this potential. The energy required to exclte
an electron is talken to be the difference in energy values

for the solutions of SchrBdinger's equation.

This method of treatment 1s obviously rather crude,
In Section II, we saw that the potential in which an electron

moves is not lndependent of the energy of the electron.

This change is due to the difference in interaction between

—-—-—-..—--—-s_-_—u_.—_--...—--—--——--——:-—_.—-n-—--—----——_---.--__q-u-q—n‘.-.q-—
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the electrons and we must take into account its effect on
the total energy in determining the excitation energy of
a single electron. _

If we treat the crystal by the Fock method, using
lattice functions, we must consider what is meant by an ex-
cited state,

The most natural interpretation of excitation will -
consglst of replacing one of the lowest one electron lattice
functions by the wave function for an excited state. We
have shown in the laét part of Section II that the energy
difference between the two determinantal functions 1s just
the differsnce In the energy parameters of the Fock eguations
for the two lattice functions. In dealing with the Fock
equations, we have replaced them by Schr8dinger eguations,
and in this the treatment is similar to Wiison?’s, However,
we have found it logical to use a different potential funec-
tion in the SchrBdinger equation, depending on the senergy of
the lattice function in question. This difference is Just
such as to make the energy parameters include the effect of
the varying exchange energy of different energy lattlce funec-
tions. The writer, independently of Wilson's work, devel-

. oped a theory of dispersion, using determlnants, rather than
treating the eleetrons individually end taking the energy

differences ss those given by the Fock scheme.®* The formila
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for index of refraction was the same as that obtained by
Wilson, save that the wave functions and values of e
have a different interpretation.

On both Wilsen's theory and the writer's, absorp-
tion of light by the crystal would bé expected when the fre-
quency of the light corresponds to that of & transition
from an occupied to an unocceupled band. The difference in
interpretation of the transition energy has been discussed
abovs.,

In order to calculate the dispersion properties,
1t is necessary to know the wave functions for the excited
states. It is impractical to ecarry out calculations, such
as those for the C1~ 3p band, for enough higher bands to
evaluate the expressicns for index of refraction. However,
the ultraviolet absorption should depend upeon the energy
difference between the highest occupiéd and lowest unocccupied
bands.,

It is therefore worth while to attempi to calculate

the first excited band.

C1-C1 Joining
The C1-Cl joining approximation is evidently crudgr
for the exclted electrons than for the filled levels. The
. excited functions will certainly be less restricted to the

Cits and the Na's wiil play a correspendingly more important
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role. Nevertheless, there are severzl points of interest
in this method.

In the first place, we are interested 4in states
in the two bands having the same value of the quantity
H (= 2¢%/a as defined in section 6), On the C1-Cl approx-
lmation, the highest value 1n the Cl1~ 3p band comes at
# = 0 and k = 0 . The next highest solution is for
.S =0 and k =0 , The difference between the energies
. should then give us the ultraviolet absorption frequenc#.
The ultravioliet absorption edge is at 172030‘ This corresponds
+0 aﬁ_energy difference of 0.54 A¢.U, 1If we use the same
potential fleld for the p and 4 functions, we find the
energy difference between baunds to be 0.30 At.U, I we use
g potential which does not have the hole, the value is about
1.3 At.U. By assuming a proper fraction of the 3p heole %o
be left affer the eleciron has jumped to a higher band, 1t
would be possible to obtaln any band separat%on between

about one-half and twice the ultravioclet absorption edge.

Ng-Cl Joining
On this approximation, we can allow the sodium
atoms to play an important part, and thls permits us to

use some physical reasoning in conneetion with what should

‘be the first excitedlband.

R e Fve 1+ b e i T e A i okl R O e ek W W g e N 0 R A T Y e T R i et W P R e S S el fns L

* Landolt-Bornstein, BWII, 913,
fsndbuch d. Exp. Phys. XIX, 183.
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We may consider the fonic lattice as belng formed
in the following way out of ions, Arrange the ions in the
NaCl lattice, but at infinite lattice constant, and then
shrink the lgttice together. At infinite separation the
ions are not affected by each.other, and individual ien wave
fuhctians may be used., The Pirst excited state for these
conditions will be formed by removing ar electron from one
of the C1 ilons and putting it on one of the Na® ions. As
the lsttice 1s squeezed together, the electrons on the €1~
iors find themselves more closely surrourded by the positive

~dong and, hence, thelr energy hand. drops lower on the energy
scale, the amount being obtained from the lattice potentizis.
‘Finslly, when the atoms get very clgsé together, the band
widens and 1ts average ehergy begins to inerease. This in-
treduces a repulsive force.and holds the lattice aparé zt
the equilibrium spacing. On the gther hand, the electron Iin
excited level finds itself more clozely surrounded by neg-

ative lons and its potentisl rises. Due to the greater spa-

tial extenslon of the wave functions, the excited level begins
to widen at s lsrger spacing than the f£illed levels, and its
lower edge tends to drap.* Cur problem is to see 1f there

1s an analogue to this behavior in the Ra-01 dcining case.

TR RT3 7 s e Y O TR e e T DI EAL ML ek T M I e e Ae Ve p i m e v e Ei e e e e —m

#The zbove pleture of the band situstion is das to J. 0. Slater,
and any flawg in its presentation here are the writer's.

Dr. Slater carries the trestment much fariher and works out

a theory of the U.V. abscrption edgs from 1%,
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As was pointed cut in Section X, page 96 , the
Na-Cl loining treatment gives the correct Eandé when the stoms
are far apart. It will thus give the correct band for the
exclited state at infinite separation. The k = 0 condition
for this band will be given by -5 = ¢ (the notation
1s that of Section X), and the 1imits in the 111 direction
by -s =« ., For very large separation, s , O and
# are continuous functions of the energy and approximately
equal to + J-E, where this is resl, except when &g
is near an eigenvalue and there they are discontinuous.

For the filled band ¢ is computed with a hole
on the {1  ion, whereas for the unfilled band it is computed
without & hole. This causes the @ discontinuity to eccur
at higher tg for the unfilled band. This situation is in-
dicated.in the adjlacent figure. As the lattice spacing is
decreased, the cnly effect at first ig thet of the Madelung
potentisl., As the actuwel lattice spacing is spproached,
the bands begin to widen and finally become very wide at the
actual spacing. The energy diffsrence between the filled
levels and the unfilled one is then about 1.5 At.U. or,
roughly, three times the cbserved value. If we use the @
for the filled band {peint P of the figure), however,
+he difference is sbout 0.75 At.U., which is the closest to
observed value of 0.54 of any of the triszls thus far.

The s = -x edges apvear to come generally some-

what higher.
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Ci-C1-Ra Joining

We shell work out only the k = Q0 case for this.
For this the lattice function should be even about both
atoms and, since it is s-like around the Ha, it should con-
sist only of spherical harmonics of full cubic symmetry.
Then the 110 type face gives one condition, g' = O . The
ldd face glves two conditions. By reasoning similar to that
- of Section XI, ﬁe eoncluds that we should use two C1 functions

and one Na. The condition of symmetry requires these to be

Ci AZ B(x4+y4+34 51'4)jr4 B
Na cs

The 110 condition is

4¢ -3BY =0 or  B=10T/g)A .

The 100 conditions are then

A crc+4§'xc = ¢
Y

O

. a -
A¢C+Q?Ye -""CS -

The g functions which are needed for evaluating Y  have
not been computed. However, for a large part of the inte-
gration the value of R{(R+ 1)/r2 = 20/r® is the don_iinant

term. Hence, 2 fair approximaticn to the g functions can
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be obtained from the sclution of the wave equation in frae
o
space, 34(JJE} r) , where jé(x) = Jex/x J%h(x) .« A -

usable approximzticn for the energy range involved cen be

obtained from just the first term of the expansion, ré.

_ The value of the energy gap between bands, btased
on the Bessel functions and & values for a potential with-
out g hole, is about 1.1 At;U, Caleculetlons were not made
with the potentisl with the hole, but the value can be estima-
ted as about 0,0 to 0.1 At.U. (The shift in wave functions
due to the hole is sbout 1.1 At.U.)} Thus, we are again at
a situation where the desired value can be obtained by a

sultable estimate of the effective hole.

Copcluding Remsrks

There are two questions which are raised by the
above work: how genuine is the varistion of the hole which
we find from the Fock approximation, and how good are any of
our'joining conditlions? Certainly, from the peint of view
of the Fock approximation, the hole must behave in much the
way outlined in Sectlion Ii. Physically, elso, we should ex-
pect a decrease in the hole for an excited electron. The
excited electron will be moving more rapidly through the lat-

tice and the other electrons will not have a chance to move

T D O e s W ot et L ————— ol A
arn L B A S - i G5 A
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%2 M. Morse, "Methods of Theoretical Physicsyl M.I. T., first
editien, pages 187 and 188,




- 130 -

out of its way as much as for a slower slectron. On the
other hand, perhaps the picture of lattice functions is

not as good as the older picture of atomic excitation. Om
the basis of that picture, individual atoms are consldered

&8s the units and excitation corre3p$nds to a change in the
energy level of the atom. The other atoms perturb the levels
and affo;d a mesns of transforming excitation energy into
lattice vibrations. For this case, there will be a hole,

as there glways is 1n the case of definite number of electrons
around an atom, regaerdless of the state of excitation of the
'atom. There does not seem to be any satisfactory answer to

the first question at present.
Regarding the second question, which concerns the
boundary conditions, it is possible to obtain some further

information by the considerations of the next section.




TEST OF THE SLATER CONDITIONS FOR FACE-CENTERED

ARD BODY-CENTERED LATTICES

There 1s one case where it should be legitimate %o
use the Slater boundary conditions for which the exact lat-
tice functions are known. This is the trivizl case of con-
stant potential., For this case, Schr8dingerts equation reduces

tc the wave equaticon in free space

By = - 95y

ey .

The lattice function sclutions of this eguation are

iver

Y= e
where the wave vector v satisfies

V2=-"E s

If spherical coordinates are used, the solutions are

Vo= Snm(ep@)Jn(wr) C

. Here .
Q]n(z) = Jn/22 Jn+1/2(z) ’
w2 = £ |
and 8§ ig an nth order surface harmonic.
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*p. M, Morse, "Metheds of Theoretlical Physics," M.I,T.,
first edition, pages 187 and 188.
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Hence, for our potential, V = 0 , we know both

" the correct lattice functions and the sphefical functions.
We should then put in a filetitlous lattice, of unit lattice
spacing; and sclve the Slater boundary conditions. The re-

sults will then be compared wiih the correct plane waves.

Face-Centered Lattice

Let the unlt vectors for the lattice be

=1 =+ =14
2.=0%% » 2,508 » 83=5%0 .
The reciprocal vectors are
bl =1211 , b2 =111 , b5 =111 .

In terms of k , the wave vector v will be
v = 2zk

Then, 1f k 1s 2 point irn the reciprocal lattice, the wave
function is pericdic. The radius HllO » at which the func-
tions should be evaluated and which occurs in tan v¢Byy4 »

is
- 211 _NE _
B10=32° » \Ruo\* 2= ¢

and
= - = £ -
T},lﬂ - tan Rllo V ta'.ﬂ 2(% + ky) @

For energy ¢ = o s the values of ¢ , x , etc., are




NGO N
Jo(mr) J 3 (wd) *

Siﬁce the expressions we obtain are zlways of zero dimensions
in the quantities O , » , etc., the common fzctor o will
cancel out. Hence, in all calculztions @ /v, z/0 , ete.
are used in place of @ , & , etc.

All that was needed to make calenlations from the
Siater conditions were tzbles of j;(g)/Jn(u)_ fdr n=0 to

3." The value of the energy is then
e =of = ()t =g,
Face-Centered 111

There are five bands for the face-centered 111
direction. (See list of Solutions.) For this directien
E =14, u, a2, and the energy of the correct lattice funciions
13 ' ¢ = v& = 4x”mu® = 12¢%u° . ‘Thers is only one type of
tangent fzctor, Tllo =M = tan =zu .

For a given value of u , the values of the 111 1line
formulae were worked out and the values of k found. From
‘these, the curves shown on Plate 10 were constructed. Cal-

culations were carried out in detall for energies below

100 At.U. For higher energles, several roots for k =
*he writer is greatly indebted to Professor P. M. Norse, who
kindly furnished him with tables of jn(p) and J5(k).
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are shown.

The k = 0 roots are very interesting for com-
parisdn with the exact solution. For the exact solution, the
lowest energy perlodic lattice function (i.e., one which tekes
the same value in every cell) is obtained by letting v =0 .
The function is then a constant. The next highest energy for
which we get perlodic functions is given by v = 2xb .

There are eight functions for this energy. They are obtained
from the elight possible values of k, of the form

=t71t1
ko 11 1 .

The energy 1s

Ve = 4::21:3 = 1222 = 118 at.0.

For s=lightly different momenta, the degeneracy of these 8

periedic functions is removed. If we consider them as func-
tions of k , which are pericdic in space for k = C , then
for values of k 1n the 111 direction they will be given

1 W 2xi(Yltu, Flu, fl+a)er
= e

These functions split into 4 sets for u # 0 ., They can be
classified according to the values cof v2 which determine

thelr energies.
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Ve = 4x® 5(i + u)? 1 function
vE€ = 4523[2(1 + u)2 + (-1 + u)g] 3 functieons
vE = gy [ (1 + uw)?® + 2(-1 + u)2] % functions
v = 5% (-1 + w)® | 1 function

For peints in the first zone of k space, ﬁ Tans from -~ 1/8
to + 1/2 . 1Tbe energy contours computed from the sbove
values are also shown in Plate léa (Dotted lines.) The last
type 1s omltted, since 1t 1s merely a duplication'of the
values slready shown between u = i/z and 1 .
We see that for k=0 , the eightfold degeneracy
at € = 118 1is represented by a fivefold degeneracy at 89
with $ =0 ; and a threefold degeneracy at 163 for x = .
Thus the avefage error in the Slater method feor the first ex-

cited set of perlodic functions is about £25%. So far as de-

tailed correlation is concerned, there is almost none. It

is possible to decide to some extent which functions of one

set should go with those of the cther on the basis of symmetry

preperﬁies, but nothing is gained by this. |
When we conslder the simplicity of the approxima-

tien, it is not surprising that the agreement is as bad as

it i1s. The first excited set of periodie functioms in the

exszct solution 1s elghtfeld degenerate. In the method of mid-

point Titting, only 12 functions were used in all. This is
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an average of 1.5 spherical harmonics for each of the eight
pPlane waves. It 1s evident that we should not expect our
approximstion to work too well.

For k¥ € 0.4 in Jthe lowest band, the sgreement
is really remarkably good, +the difference between the two
curves being less than 1% for both the 100 and 111 lines in
the face-centered lattice,

It may alsc be noted that the spuriocus energy gaps
&t the edge of the central zome (u = 0.5) are roughly the
same as those found by Slater for metallic sodimm® when the
difference in lattice constant is allowed for. The impiica-
tion of this is that the energy gap at the edge of the zone
is narrower than he supposed, znd that the laws of Bragé
reflection for diffracted electrons should be more exactly

fulfilled.

Comparison with the Na-Cl Problem

It is interesting to see roughly what part of the
graphs of Plate 10 correspond to the €1~ 3p band., We might
expect that on the scale of these drawings the 3p band would
be sc narrow as to be considered more Bloch-like than plane
Wave-like.- As a matter of fact, however, the 3p band takes

almost preclsely the same energy range as the central zone,

L A . ok W Y T A o i b A Al L e S T A it A1l - . Tk S Sy S
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The lattice spacing of NaCl is 10.€ At.U. The lattice spacing
for this section was 1 unit and the energy range of the
lowest zone was 30 units. If we enlarge the lattice spaecing
to 10 units, this difference will decrease to 0.3 units.
(The energy of the plane waves 1s proportional to the square
of the reclprocal vector.) The i 3p band has a width of
0.35 units,

| Having seen how poor the correspondence is outside
the first zone, we cannocit expect to get a check of much bet-.

ter than about 25% for the band to band tramsition in Kali,

Face-Captered 100

On Plate 10, the results of simllar computations
for the 100 line of the face-centered lattice are shown,
These are not given in as much detail as those of the 111
line. The methed of calculation and the results are general-

1y similar to those of 11l.

Body-Centered Latiice

Similar calculations have been carried out for the
body-centered lsttice. Using the same notation as for the

face-centered lsttice, the various quantities were
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-111 113 111
81288 » 288~ 3%%2 » 8;=F5%F5%
bp=011 , B,=101 , b,=110

= 2rk .

The "k lattice has the b!'s for unit vectors.

lral = |G 3D =€-a

Ti11 tan x/z(kx + ky + kz)

il
£
I

The energy for a given value of is

g-.:mg:lzﬁpg

Using this notation, the lines 110 and 100 were worked out
for the body-centered lattice. The equations for the lines
were taken from Slater!s paper.* The curves are shown on

Plate 11.

Concludin merk

It i=s found that the method of fitting midpoints_.

between nearest neighbors gives z good approximation to the

-—-..mhm—_pw“m—-mmmhﬂ-_w---I—“-.l-- —— - A ——— — -

* 7. C. Slater, Phys. Rev. 45, 798 and 799 (1934).




~ 139 -

exact plane wave solution inside the central zone. Outside
of this, it is very unreliable. For X-ray levels and very
narrow bands in general, it will give solutions qualitative-
ly similar to the Bloch scheme. For higher energies, where
the metallic correspondence is reached, its validity may

be little better than it is for plane waves, For these cases,
it would be desirable to have an approximation in which we
could place more faith. There are two ways of improving the
approximation. Either more points can be fitted -~ thils

is feasable for the body-centered lattice, but not convenient
.for the fzce-centered lattice -- or tangential derivatives
at the midpeints of the faces can be made continuous. It
would be interesting tc test such improvements by the method
of this section, and the writer has been prevented from doing
g0 only by the discrepancy between the Earth's rate of motion

about the sun znd the writer's rate of doing work.
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LIST OF SOLUTIONS FOR THE FACE~CENTERED LATTICE

hven or

Name of solution and page
reference or formula °§§aigs“
001 0611
0Glo page 52 0 -
0170 page 53 _ - O
i00 line, ¥k = uQQ
1008 tan<(¥n) = - sel E E
2 MTEEYS)
PR 3
100b  tan®(3u) = -9 0 0
100¢c = $=0 - 0 E
1004 B G
2ox - 29
tan"(zu) = - e
100e 0 E
110 line, X = uyud
Let K = tanxu, ¥ = tan{#u/2)
1102 KM xg(58+8) + K°§(w+p) (3+5¢)
+ 4KM S (p-x) (r-%) E E
+ 28 (x+p) (28+0) + 128%¢ =0
1106 . % = - % 0 E
110¢ % < - - 29 E 0

Sheets of 3p
band connected
with this
selution

I and IT
II and IIIX

II and III

I and IT

I and I1

111
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111 Jline, k = wuu

11ia  tan®(iu) = - ;%i%%j - E 1
111b | | E
tan®(su) = “,E%?%’ - II and III

11le 0

1118} | E

Yy S=0 -

1lle : 0

111f ¢ = | - 0

Ia page 56 E - IIX
I - page 57 B -

I and II
Ie rage 57 0 -
14 page 58 , $ = 0 -

Line IT, k = u(100) + %(011)

Ila page &3 - E I and II

IIb page 63 | - 0 IIT
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IIT, k = (v=1)}(1 +

IIIa page 86 | | - E I and II
IITb . page 686 - 0 I1T
ITlc page 67 S = o) - 0

Line IV, k = u(01l) + £(111)

IVa pagé 71 - -
Ive page 87 (discussion of IVh) - -
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ABSTRACT

The purpose of this thesis has been to extend the
methods of calculation of wave functions in solilds and te
investigate the applications of these wave functions. The
point of view hasz been that of the modlfied Hartree-Fock
scheme of czlculating wave functions de#eloped by Wigner
and Seitz,* together with the Slater**_method of calculating
excited states.

In perticular, detalled computations have been made
for the highest filled band in crystalline sodium chloride
(rock salt), which originates from the completed 3p shell of
the Ci" ion. 1In the'process of this work, new methods were re-
guired in order to treat the type of boundary conditions arising
for the case of two different kinds of atoms. Three different
appraximations, which may be characterized by the joining con-
ditions, have béen investigated. The most exact of these in-
volves satisfying the Slater boundsry conditions {continuity
of jﬁ'., an@ the component of V’V*along the interatomic
line) at the midpoiﬁt of both the 113 type inter-chlorine line
and the 100 type chlorine-sodium line. The approximation Gb=-
tained by using the Cl-Na points alone differs marksdly from

this in its energy contours and is unsatisfactory for wvariocus
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other reazmons. Anothergpproximeticn is obizined by neglect-
ing tne Ha~Cl points and using the C1-Cl points alone. Al-
though this formulation would obviously be Inadequate for the

wite close to

Wi

bands arising from Ne levels, 1lis results ars
those of the most complete method whers that method has been
worked out. It alsc has the szdvantage of lesding to the face-
centersed lattice conditlons which have already bee@ investigated
by Krutter

Tn the course of lnvestigating the faoe—-centered lat-
tice, several new methods of inoressing the informstlion con-
cerning the energy coniours heve been developad, It has beed
found possible to make czlenlztions for small values of the
wave vector, k, for cases in which i1t is impracticsal to carry
out the detasils of the Slater method for larger values of k .
Several new reductions of the genersl Lleler determinant have
been found which =llow the energy annitours o be drawn through-
aut space with a good decl more confidence than before.

It is possibls Lo test +he sdeguacy of the Slater
methuc by applying it to the cne case Per which the correct
solution is actuslly ﬁncwn: thet of the cnge of zero poten-
tia]l which glves rise to plane waves. This test hes besn
cnrried out for the important dipscticns in vody and face-
centered lattices. For momenta within the flrst Brillouin

zone, the agreement is excellient., For the ouler wones, it 1s

guite unﬂatisfaﬁtory snd indicates definltely that some other

*1, M. K rutte ansg Reve 48, o4 (152%,
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method oust be employed there to obtain accurate results.




