S-DeC projects

S. D. C. PRODUCTS (ELECTRONICS) LTD.

COLOUR CODING OF RESISTORS

In these circuits the multiplier K (i.e. $\times 10^{\circ}$) also indizates the position of the decimal poim, e.g. 4 K 7 is the anme 48.7 K and is 4700 Q

Colour	```A lat Digit Restetence in Ohms```	B 2nd Diglt Real ptance In Ohms	$\begin{gathered} \text { C } \\ \text { Multiplier } \\ \text { of } \\ \text { Resistence } \end{gathered}$	0 Tolerence
Black	0	0	1	-
Brown	1	1	10	-
Red	2	2	100	-
Orange	3	3	1000	
Yallow	4	4	10000	.
Green	5	5	100000	-
Glue	6	6	1000000	*
Violet	7	7	10000000	
Gey	8	8		-
White	9	9		-
Gold	-	-	0.1	5\%
Siver	*	-	0.01	10%
Nene	-	-		20\%

TRANSISTORS

- - emitter. cocollector, b bact, - - shield. ev enveloose.

Tou ahould be abla to identify the leeds an Une trasidetera in echas dion uet from these diferams. If in contot roAl binould consult book an tran. surtors or tue che date teved by the manu. tacturer.

CAPACITORS

Most capections have the value written on them, but come are coded. Differthi manufacturers may use different codes, ${ }^{30}$ when in doubt consult the manufecturer's data. Below we illustrated a few typical coding methods.

Is this bootion values have been. written in $u F\left(10{ }^{-9} \mathrm{~F}\right)$, nF ($10{ }^{-}{ }^{\circ} \mathrm{F}$) and $\mathrm{PF}\left(10{ }^{11} \mathrm{~F}\right)$. Thus 100 nF is the same as $0.1_{\mu} \mathrm{F}$.

Notes: Values from $1,000 \mathrm{pF}$ to $9,900 \mathrm{pF}$ are shown in $p F$ by use of the multiplier K (i.e. $\times 10^{0}$), which also indicates the poxition of the decimal point. Values above $10,000 \mathrm{pF}$ are shown in μ F.

ELECTROLYTIC CAPACITORE

Most electrolytic capacitors have a + to mark the pooltive end and many have a - sign to indicate the negative end. If tharo is no + marked, then the positive end is often indicated by a apecial shape to the case at that end; a red marker (if there is alto a black marker at the other end); a black line or marker (if there is no other coloured marker). The negative loed can often be identified because it it usually connected directly to the case whereas the positive lead will be insulated from the case.

ELECTRONIC FLASHER.

BINARY COUNTER.

LC OSCILLATOR.

3

3-STAGE AMPLIFIER.

MORSE PRACTICE OSCILLATOR.

Details of the wiring for the circuits on pages 7 and 8

RADIO RECEIVER.

VHF RADIO-MICROPHONE.

LIGHT-OPERATED SWITCH.

HOW TO

SEPARATE DeCs

The pictures show the way to separate S -DeCs should they be tight. If the DeCs are very tight, then dry soap put on the keys will lubricate the keyways.

CR OSCILLATOR.

WIEN NETWORK OSCLLLATOR.

S-DeC is designed for the rapid interconnection of electrical - and electronic components. Normal compquent wires up to a thickness of $.040^{\prime \prime}$ can be accommodated.

Contact arrangement

The 70 contacts on a single S-DCC unit are divided into independent panels. Each panel contains 7 parallel row of contacts. The contacts in each row are connected, e.g., contacts 1 to 5 inclusive are joined together.

Motratian of Controls

Potentiometers, switches, etc., can be mounted on the control panel provided in the accessory kit. The panel simply 1 yots into the S-DoC base.

Solderless connections can easily be made to such controls using the springs provided in the accessory kit. The springs are pushed over the lags on components, the wifes inserted through the holes in-the lugs, and the springs relgased to trap the wire.

The four clips in the kit can be used for mounting ferrite rod on the control panel. A small clip and a large clip are bolted back to back and mounted on top of the panel.

Circuits requiring the use of more than ome S-DeC

S-DeCs can be simply and'quickly joined together to form large areas of decking using the interlocking keyways on the sides of the units. Control panels can still be fitted to any of the S-DEW providing mounts for pre-set controls, etc. The complete decking can be moved and stored without disrupting the circuits already on the decking. To interlock, slide the keys vertically into the keyways. To unlock, press with the thumbs at points close to the keyways on one of the decks, appiving equal pressure at each paint. When removing a deck secured by others on two sides, place the thumbs centrally between the keys on the secured sides and apply equal pressure. (See page 10 in construction bnoklet)

Precautions to ene

To avoid damage to S-DeC and to ensure a long contact life we advise the following precaution be taken:-

- do not use badly bent wires, expecially with a hook at the end, as they may damage the contact assembly when withdrawn;
- components witrfimps of solder on them should not be used; wires covered in grease or dirt should not be used in case they should deposit an insulating film on contacts: controls should be mounted on the control panel and wires attached before slotting the panel into place.
In order tofensure good contact; the following procedures are advisable:-
- push component wires well in;
- use single rather than stranded wire for linking rows of contacts, joining to batteries, etc.;
- do not put two wires in the same hole. as one of them may not make contact;
- bend component wires so that they enter holes vertically. (The jig provided with each S-DeC will help bend wires correctly.).

Technical Data

Insertion \& Withdrawal forces (.040' wire) after $\quad\left(\begin{array}{cc}2-3 & \mathrm{oz} . \mathrm{wt}\end{array}\right.$ 1,000 insertions
Resistance between adjacent contacts (total) 60-90 gm.wt

Insulation resistance between adjacent rows $\quad 10^{10} \mathrm{Ohm}$
Capacitance between adjacent rows 3 pF
Contacts - phosphor-bronze to BSS 407/2 self-finish.

